Azevedo CJ, Cen SY, Khadka S, Liu S, Kornak J, Shi Y, Zheng L, Hauser SL, Pelletier D (2018) Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease. Ann Neurol 83(2):223–234
Article PubMed PubMed Central Google Scholar
Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB (2016) Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 30:25–48
De Stefano N, Giorgio A, Battaglini M, Rovaris M, Sormani M, Barkhof F, Korteweg T, Enzinger C, Fazekas F, Calabrese M (2010) Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74(23):1868–1876
Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. The Lancet Neurology 5(2):158–170
Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60(7):989–994
Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, L. Whitwell J, Ward C, (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Mag Resonance Imaging Official J Inter Soc Mag Res Med 27(4):685–691
Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, Pacheco J, Albert M, Killiany R, Blacker D (2009) MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46(1):177–192
Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821
Article CAS PubMed Google Scholar
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Mag Reson Med 42(5):952–962
Deshmane A, Gulani V, Griswold MA, Seiberlich N (2012) Parallel MR imaging. J Magn Reson Imaging 36(1):55–72
Article PubMed PubMed Central Google Scholar
Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25(2):72–82
Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Mag Reson Med 58(6):1182–1195
Sartoretti E, Sartoretti T, Binkert C, Najafi A, Schwenk Á, Hinnen M, van Smoorenburg L, Eichenberger B, Sartoretti-Schefer S (2019) Reduction of procedure times in routine clinical practice with Compressed SENSE magnetic resonance imaging technique. PLoS ONE 14(4):e0214887
Article CAS PubMed PubMed Central Google Scholar
Vranic J, Cross N, Wang Y, Hippe D, De Weerdt E, Mossa-Basha M (2019) Compressed sensing–sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. Am J Neuroradiol 40(1):92–98
Article CAS PubMed PubMed Central Google Scholar
Duan Y, Zhang J, Zhuo Z, Ding J, Ju R, Wang J, Ma T, Haller S, Liu Y, Liu Y (2020) Accelerating brain 3D T1-weighted turbo field echo MRI using compressed sensing-sensitivity encoding (CS-SENSE). Eur J Radiol 131:109255
Jaspan ON, Fleysher R, Lipton ML (2015) Compressed sensing MRI: a review of the clinical literature. Br J Radiol 88(1056):20150487
Article PubMed PubMed Central Google Scholar
Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Mag Reson Med 59(2):365–373
Yarach U, Saekho S, Setsompop K, Suwannasak A, Boonsuth R, Wantanajittikul K, Angkurawaranon S, Angkurawaranon C, Sangpin P (2021) Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures. Magn Reson Mater Phys, Biol Med 34:915–927
Montagnon E, Cerny M, Cadrin-Chênevert A, Hamilton V, Derennes T, Ilinca A, Vandenbroucke-Menu F, Turcotte S, Kadoury S, Tang A (2020) Deep learning workflow in radiology: a primer. Insights Imaging 11:1–15
Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49(4):939–954
Lyu Q, You C, Shan H, Wang G (2018) Super-resolution MRI through deep learning. Arxiv Preprint. https://doi.org/10.48550/arXiv.1810.06776
Benou A, Veksler R, Friedman A, Raviv TR (2017) Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences. Med Image Anal 42:145–159
Article CAS PubMed Google Scholar
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31
Qiu D, Zhang S, Liu Y, Zhu J, Zheng L (2020) Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning. Comput Methods Programs Biomed 187:105059
de Leeuw den Bouter M, Ippolito G, O’Reilly T, Remis R, van Gijzen M, Webb A, (2022) Deep learning-based single image super-resolution for low-field MR brain images. Sci Rep 12(1):6362
Chaika M, Afat S, Wessling D, Afat C, Nickel D, Kannengiesser S, Herrmann J, Almansour H, Männlin S, Othman AE (2023) Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time. Diagn Interv Imaging 104(2):53–59
Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan GF (2023) Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J Digit Imaging 36(1):204–230
Zhou Z, Ma A, Feng Q, Wang R, Cheng L, Chen X, Yang X, Liao K, Miao Y, Qiu Y (2022) Super-resolution of brain tumor MRI images based on deep learning. J Appl Clin Med Phys 23(11):e13758
Article PubMed PubMed Central Google Scholar
Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018. pp 2472–2481.
McDonagh S, Hou B, Alansary A, Oktay O, Kamnitsas K, Rutherford M, Hajnal JV, Kainz B Context-sensitive super-resolution for fast fetal magnetic resonance imaging. In: Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment: Fifth International Workshop, CMMI 2017, Second International Workshop, RAMBO 2017, and First International Workshop, SWITCH 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings 5, 2017. Springer, pp 116-126
Tian Q, Bilgic B, Fan Q, Ngamsombat C, Zaretskaya N, Fultz NE, Ohringer NA, Chaudhari AS, Hu Y, Witzel T (2021) Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution. Cereb Cortex 31(1):463–482
Hore A, Ziou D Image quality metrics: PSNR vs. SSIM. In: 2010 20th international conference on pattern recognition, 2010. IEEE, pp 2366–2369.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
Mair RW, Hanford LC, Mussard E, Hilbert T, Kober T, Buckner RL Towards 1 min brain morphometry—evaluating compressed-sensing MPRAGE. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2019. p 2978.
Shin DD, Rettmann D, Takei N, Banerjee S Compressed Sensed MPRAGE with Parallel Imaging: Image Quality Metrics and Morphometry Study at 3T. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2020. p 1747.
Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA (2018) Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 80(5):2139–2154
Article PubMed PubMed Central Google Scholar
Sui Y, Afacan O, Jaimes C, Gholipour A, Warfield SK (2022) Scan-specific generative neural network for MRI super-resolution reconstruction. IEEE Trans Med Imaging 41(6):1383–1399
Article PubMed PubMed Central Google Scholar
Zhao C, Dewey BE, Pham DL, Calabresi PA, Reich DS, Prince JL (2020) SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans Med Imaging 40(3):805–817
Comments (0)