Artificial intelligence for neuro MRI acquisition: a review

Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

Article  CAS  PubMed  Google Scholar 

Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille P-ML (2001) Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imaging 19(2):219–226

Article  CAS  PubMed  Google Scholar 

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L (2019) Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32

Lelieveldt BP, van der Geest RJ, Lamb HJ, Kayser HW, Reiber JH (2001) Automated observer-independent acquisition of cardiac short-axis MR images: a pilot study. Radiology 221(2):537–542

Article  CAS  PubMed  Google Scholar 

Young S, Bystrov D, Netsch T, Bergmans R, van Muiswinkel A, Visser F, Sprigorum R, Gieseke J (2006) Automated planning of MRI neuro scans. In: Medical imaging 2006: image processing, 2006. SPIE, pp 551–558.

Al-Ayyoub M, Al-Mnayyis N, Alsmirat MA, Alawneh K, Jararweh Y, Gupta BB (2018) SIFT based ROI extraction for lumbar disk herniation CAD system from MRI axial scans. J Ambient Intell Humaniz Comput:1–9.

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

Article  Google Scholar 

Ronneberger O, Fischer P, Brox T (2015) (2015) U-net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18. Springer, Berlin, pp 234–241

Google Scholar 

Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767

Lei K, Syed AB, Zhu X, Pauly JM, Vasanawala SV (2023) Automated MRI field of view prescription from region of interest prediction by intra-stack attention neural network. Bioengineering 10(1):92

Article  PubMed  PubMed Central  Google Scholar 

Alansary A, Folgoc LL, Vaillant G, Oktay O, Li Y, Bai W, Passerat-Palmbach J, Guerrero R, Kamnitsas K, Hou B (2018) (2018) Automatic view planning with multi-scale deep reinforcement learning agents. Medical image computing and computer assisted intervention–MICCAI 2018: 21st international conference, Granada, Spain, September 16–20, 2018, Proceedings, Part I. Springer, Berlin, pp 277–285

Google Scholar 

Yang X, Tang WT, Tjio G, Yeo SY, Su Y (2020) Automatic detection of anatomical landmarks in brain MR scanning using multi-task deep neural networks. Neurocomputing 396:514–521

Article  Google Scholar 

GE HealthCare. AIR x™ for precise MRI slices, accessed 5 May 2024. https://www.gehealthcare.com/products/magnetic-resonance-imaging/mr-workflow-solutions/air-x-mri-slices

Canon Medical Systems USA. Auto Scan Assist, accessed 5 May 2024. https://us.medical.canon/products/magnetic-resonance/technology/auto-scan-assist/

Hoffmann M, Moyer DC, Zhang L, Golland P, Gagoski B, Grant PE, van der Kouwe AJ (2021) Learning-based automatic field-of-view positioning for fetal-brain MRI. In: ISMRM 2021; Virtual, p 1362

Benner T, Wisco JJ, van der Kouwe AJ, Fischl B, Vangel MG, Hochberg FH, Sorensen AG (2006) Comparison of manual and automatic section positioning of brain MR images. Radiology 239(1):246–254

Article  PubMed  Google Scholar 

Singh VK, Kalafi EY, Wang S, Benjamin A, Asideu M, Kumar V, Samir AE (2022) Prior wavelet knowledge for multi-modal medical image segmentation using a lightweight neural network with attention guided features. Expert Syst Appl 209:118166

Article  Google Scholar 

Kim DH, Adalsteinsson E, Glover GH, Spielman DM (2002) Regularized higher-order in vivo shimming. Magn Reson Med 48(4):715–722

Article  PubMed  Google Scholar 

Hetherington HP, Chu WJ, Gonen O, Pan JW (2006) Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med 56(1):26–33

Article  CAS  PubMed  Google Scholar 

Stockmann JP, Witzel T, Keil B, Polimeni JR, Mareyam A, LaPierre C, Setsompop K, Wald LL (2016) A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn Reson Med 75(1):441–451

Article  PubMed  Google Scholar 

Han H, Song AW, Truong TK (2013) Integrated parallel reception, excitation, and shimming (iPRES). Magn Reson Med 70(1):241–247

Article  PubMed  PubMed Central  Google Scholar 

Juchem C, Rudrapatna SU, Nixon TW, de Graaf RA (2015) Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla. Neuroimage 105:462–472

Article  PubMed  Google Scholar 

Kim T, Lee Y, Zhao T, Hetherington HP, Pan JW (2017) Gradient-echo EPI using a high-degree shim insert coil at 7 T: implications for BOLD f MRI. Magn Reson Med 78(5):1734–1745

Article  CAS  PubMed  Google Scholar 

Liao C, Stockmann J, Tian Q, Bilgic B, Arango NS, Manhard MK, Huang SY, Grissom WA, Wald LL, Setsompop K (2020) High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T1 corrections and integrated ΔB0/Rx shim array. Magn Reson Med 83(1):56–67

Article  CAS  PubMed  Google Scholar 

Becker M, Jouda M, Kolchinskaya A, Korvink JG (2022) Deep regression with ensembles enables fast, first-order shimming in low-field NMR. J Magn Reson 336:107151

Article  CAS  PubMed  Google Scholar 

Xu J, Yang B, Kelley D, Magnotta VA (2023) Automated high-order shimming for neuroimaging studies. Tomography 9(6):2148–2157

Article  PubMed  PubMed Central  Google Scholar 

Zhang M, Arango N, Stockmann JP, White J, Adalsteinsson E (2022) Selective RF excitation designs enabled by time-varying spatially non-linear Δ B 0 fields with applications in fetal MRI. Magn Reson Med 87(5):2161–2177

Article  PubMed  Google Scholar 

Zhang M, Arango N, Arefeen Y, Guryev G, Stockmann JP, White J, Adalsteinsson E (2023) Stochastic-offset-enhanced restricted slice excitation and 180° refocusing designs with spatially non-linear ΔB0 shim array fields. Magn Reson Med 90(6):2572–2591

Article  PubMed  Google Scholar 

Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. Proc IEEE Conf Comput Vis Pattern Recognit 2018:586–595

Google Scholar 

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Oxford

Google Scholar 

Brown AD, Marotta TR (2018) Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc 25(5):568–571

Article  PubMed  Google Scholar 

Kalra A, Chakraborty A, Fine B, Reicher J (2020) Machine learning for automation of radiology protocols for quality and efficiency improvement. J Am Coll Radiol 17(9):1149–1158

Article  PubMed  Google Scholar 

Nencka AS, Sherafati M, Goebel T, Tolat P, Koch KM (2021) Deep-learning based tools for automated protocol definition of advanced diagnostic imaging exams. arXiv:2106.08963

Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J (2021) Learning transferable visual models from natural language supervision. In: International conference on machine learning, 2021. PMLR, pp 8748–8763

Dang HN, Golkov V, Wimmer T, Cremers D, Maier A, Zaiss M (2023) Joint MR sequence optimization beats pure neural network approaches for spin-echo MRI super-resolution. arXiv:2305.07524

Hoinkiss DC, Huber J, Plump C, Lüth C, Drechsler R, Günther M (2023) AI-driven and automated MRI sequence optimization in scanner-independent MRI sequences formulated by a domain-specific language. Front Neuroimaging 2:1090054

Article  PubMed  PubMed Central  Google Scholar 

Schneider JT, Kalayciyan R, Haas M, Herrmann SR, Ruhm W, Hennig J, Ullmann P (2013) Inner-volume imaging in vivo using three-dimensional parallel spatially selective excitation. Magn Reson Med 69(5):1367–1378

Article  PubMed  Google Scholar 

Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31(1):4–18

Article  PubMed  Google Scholar 

Keevil SF (2006) Spatial localization in nuclear magnetic resonance spectroscopy. Phys Med Biol 51(16):R579

Article  CAS  PubMed  Google Scholar 

Luo T, Noll DC, Fessler JA, Nielsen J-F (2021) Joint design of RF and gradient waveforms via auto-differentiation for 3D tailored excitation in MRI. IEEE Trans Med Imaging 40(12):3305–3314

Article  PubMed  PubMed Central  Google Scholar 

Loktyushin A, Herz K, Dang N, Glang F, Deshmane A, Weinmüller S, Doerfler A, Schölkopf B, Scheffler K, Zaiss M (2021) MRzero-Automated discovery of MRI sequences using supervised learning. Magn Reson Med 86(2):709–724

Article  CAS  PubMed  Google Scholar 

Vinding MS, Skyum B, Sangill R, Lund TE (2019) Ultrafast (milliseconds), multidimensional RF pulse design with deep learning. Magn Reson Med 82(2):586–599

Article  PubMed  Google Scholar 

Wang G, Luo T, Nielsen J-F, Noll DC, Fessler JA (2022) B-spline parameterized joint optimization of reconstruction and k-space trajectories (bjork) for accelerated 2d mri. IEEE Trans Med Imaging 41(9):2318–2330

Comments (0)

No login
gif