Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model

Egger J, Pepe A, Gsaxner C, Jin Y, Li J, Kern R (2021) Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact. PeerJ Computer Science 7:e773

Article  PubMed  PubMed Central  Google Scholar 

Cootes TF, Taylor CJ (1992) Active shape models-‘smart snakes’. In: BMVC92, Springer, pp 266–275

Sclaroff S, Isidoro J (1998) Active blobs. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), IEEE, pp 1146–1153

Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Transactions on pattern analysis and machine intelligence 23(6):681–685

Article  Google Scholar 

Semper-Hogg W, et al. (2017) Virtual reconstruction of midface defects using statistical shape models. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 45(4):461–466

Article  PubMed  Google Scholar 

Fuessinger MA, et al. (2019) Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling. Journal of Cranio-maxillofacial Surgery 47:1054–1059

Article  PubMed  Google Scholar 

Fuessinger MA, et al. (2017) Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics. International Journal of Computer Assisted Radiology and Surgery 13:519–529

Article  PubMed  Google Scholar 

Lamecker H (2008) Variational and statistical shape modeling for 3d geometry reconstruction. Master’s thesis, Zuse-Institut Berlin

Pimentel P, Szengel A, Ehlke M, Lamecker H, Zachow S, Estacio L, Doenitz C, Ramm H (2020) Automated virtual reconstruction of large skull defects using statistical shape models and generative adversarial networks. In: Cranial Implant Design Challenge, Springer, pp 16–27

Kun Z (2014) Dense correspondence and statistical shape reconstruction of fractured, incomplete skulls. Master’s thesis, National University of Singapore

Dworzak J, Lamecker H, von Berg J, Klinder T, Lorenz C, Kainmüller D, Seim H, Hege HC, Zachow S (2010) 3d reconstruction of the human rib cage from 2d projection images using a statistical shape model. International journal of computer assisted radiology and surgery 5(2):111–124

Article  PubMed  Google Scholar 

Kainmueller D, Lamecker H, Zachow S, Hege HC (2009) An articulated statistical shape model for accurate hip joint segmentation. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, pp 6345–6351

Lamecker H, Lange T, Seebass M (2002) A statistical shape model for the liver. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 421–427

Heimann T, Meinzer HP (2009) Statistical shape models for 3d medical image segmentation: a review. Medical image analysis 13(4):543–563

Article  PubMed  Google Scholar 

Besl PJ, McKay ND (1992) Method for registration of 3-d shapes. In: Sensor fusion IV: control paradigms and data structures, Spie, vol 1611, pp 586–606

Google Scholar 

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, Springer, pp 234–241

Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J (2018) Unet++: A nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp 3–11

Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA (2018) H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes. IEEE transactions on medical imaging 37(12):2663–2674

Article  PubMed  Google Scholar 

Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), IEEE, pp 565–571

Pepe A, Li J, Rolf-Pissarczyk M, Gsaxner C, Chen X, Holzapfel GA, Egger J (2020) Detection, segmentation, simulation and visualization of aortic dissections: A review. Medical image analysis 65:101773

Article  PubMed  Google Scholar 

Reyneke C, Thusini X, Douglas T, Vetter T, Mutsvangwa T (2018) Construction and validation of image-based statistical shape and intensity models of bone. In: 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), IEEE, pp 1–4

Grauman K, Shakhnarovich G, Darrell T (2003) Inferring 3d structure with a statistical image-based shape model. In: ICCV, vol 3, p 641

Bharath K, Kurtek S, Rao A, Baladandayuthapani V (2018) Radiologic image-based statistical shape analysis of brain tumours. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67(5):1357–1378

PubMed  Google Scholar 

Li J, Gsaxner C, Pepe A, Morais A, Alves V, von Campe G, Wallner J, Egger J (2021b) Synthetic skull bone defects for automatic patient-specific craniofacial implant design. Scientific Data 8(1):1–8

Article  Google Scholar 

Morais A, Egger J, Alves V (2019) Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: World Conference on Information Systems and Technologies, Springer, pp 151–160

Li J, von Campe G, Pepe A, Gsaxner C, Wang E, Chen X, Zefferer U, Tödtling M, Krall M, Deutschmann H, et al. (2021a) Automatic skull defect restoration and cranial implant generation for cranioplasty. Medical Image Analysis p 102171

Li J, Pepe A, Gsaxner C, von Campe G, Egger J (2020) A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449

Li J, Pimentel P, Szengel A, Ehlke M, Lamecker H, Zachow S, Estacio L, Doenitz C, Ramm H, Shi H, et al. (2021e) Autoimplant 2020-first miccai challenge on automatic cranial implant design. IEEE Transactions on Medical Imaging

Kodym O, Španěl M, Herout A (2021a) Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data. Computers in Biology and Medicine 137:104766

Article  PubMed  Google Scholar 

Ellis DG, Alvarez CM, Aizenberg MR (2021) Qualitative criteria for feasible cranial implant designs. In: Cranial Implant Design Challenge, Springer, pp 8–18

Mahdi H, Clement A, Kim E, Fishman Z, Whyne CM, Mainprize JG, Hardisty MR (2021) A u-net based system for cranial implant design with pre-processing and learned implant filtering. In: Cranial Implant Design Challenge, Springer, pp 63–79

Wodzinski M, Daniol M, Hemmerling D (2021) Improving the automatic cranial implant design in cranioplasty by linking different datasets. In: Cranial Implant Design Challenge, Springer, pp 29–44

Peason K (1901) On lines and planes of closest fit to systems of point in space. Philosophical Magazine 2(11):559–572

Google Scholar 

Kraevoy V, Sheffer A (2005) Template-based mesh completion. In: Symposium on Geometry Processing, Citeseer, vol 385, pp 13–22

Google Scholar 

Yu L, Li J, Egger J (2021) Pca-skull: 3d skull shape modelling using principal component analysis. In: Cranial Implant Design Challenge, Springer, pp 105–115

Li J, Ellis DG, Kodym O, Rauschenbach L, Rieß C, Sure U, Wrede KH, Alvarez CM, Wodzinski M, Daniol M, et al. (2023) Towards clinical applicability and computational efficiency in automatic cranial implant design: An overview of the autoimplant 2021 cranial implant design challenge. Medical Image Analysis p 102865

Li J, Krall M, Trummer F, Memon AR, Pepe A, Gsaxner C, Jin Y, Chen X, Deutschmann H, Zefferer U, et al. (2021c) Mug500+: Database of 500 high-resolution healthy human skulls and 29 craniotomy skulls and implants. Data in Brief 39:107524

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellis DG, Aizenberg MR (2020) Deep learning using augmentation via registration: 1st place solution to the autoimplant 2020 challenge. In: Cranial Implant Design Challenge, Springer, pp 47–55

Li J, Pepe A, Gsaxner C, Jin Y, Egger J (2021d) Learning to rearrange voxels in binary segmentation masks for smooth manifold triangulation. arXiv preprint arXiv:2108.05269

Egger J, Kapur T, Fedorov A, Pieper S, Miller JV, Veeraraghavan H, Freisleben B, Golby AJ, Nimsky C, Kikinis R (2013) Gbm volumetry using the 3d slicer medical image computing platform. Scientific reports 3(1):1–7

Article  Google Scholar 

Grupp RB, Chiang H, Otake Y, Murphy RJ, Gordon CR, Armand M, Taylor RH (2015) Smooth extrapolation of unknown anatomy via statistical shape models. In: Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, SPIE, vol 9415, pp 518–527

Grupp R, Otake Y, Murphy R, Parvizi J, Armand M, Taylor R (2016) Pelvis surface estimation from partial ct for computer-aided pelvic osteotomies. In: Orthopaedic Proceedings, Bone & Joint, vol 98, pp 55–55

Google Scholar 

Kodym O, Španel M, Herout A (2021b) Skullbreak dataset: An open dataset for training and validation of skull reconstruction models

Comments (0)

No login
gif