L. Mirabello, R.J. Troisi, S.A. Savage, Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and end results program. Cancer. 115, 1531–1543 (2009)
H. Koksal, E. Muller, E.M. Inderberg et al., Treating osteosarcoma with CAR T cells. Scand. J. Immunol. 89, e12741 (2019)
M.A. Duggan, W.F. Anderson, S. Altekruse et al., The Surveillance, Epidemiology, and end results (SEER) Program and Pathology: toward strengthening the critical relationship. Am. J. Surg. Pathol. 40, e94–e102 (2016)
Article PubMed PubMed Central Google Scholar
G. Bacci, A. Briccoli, M. Rocca et al., Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann. Oncol. 14, 1126–1134 (2003)
Article CAS PubMed Google Scholar
A.M. Goorin, M.B. Harris, M. Bernstein et al., Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J. Clin. Oncol. 20, 426–433 (2002)
Article CAS PubMed Google Scholar
W.G. Ward, K. Mikaelian, F. Dorey et al., Pulmonary metastases of stage IIB extremity osteosarcoma and subsequent pulmonary metastases. J. Clin. Oncol. 12, 1849–1858 (1994)
Article CAS PubMed Google Scholar
J.C. Gentet, M. Brunat-Mentigny, M.C. Demaille et al., Ifosfamide and etoposide in childhood osteosarcoma. A phase II study of the French Society of Paediatric Oncology. Eur. J. Cancer. 33, 232–237 (1997)
Article CAS PubMed Google Scholar
F. Navid, J.R. Willert, M.B. McCarville et al., Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer. 113, 419–425 (2008)
Article CAS PubMed Google Scholar
E. Palmerini, R.L. Jones, E. Marchesi et al., Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone. BMC Cancer. 16, 280 (2016)
Article CAS PubMed PubMed Central Google Scholar
R.L. 3rd Saylors, K.C. Stine, J. Sullivan et al., Cyclophosphamide plus Topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J. Clin. Oncol. 19, 3463–3469 (2001)
Article CAS PubMed Google Scholar
P. Van Winkle, A. Angiolillo, M. Krailo et al., Ifosfamide, carboplatin, and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/refractory sarcoma: the children’s Cancer Group (CCG) experience. Pediatr. Blood Cancer. 44, 338–347 (2005)
G. Grignani, E. Palmerini, P. Dileo et al., A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann. Oncol. 23, 508–516 (2012)
Article CAS PubMed Google Scholar
G. Grignani, E. Palmerini, V. Ferraresi et al., Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 16, 98–107 (2015)
Article CAS PubMed Google Scholar
B. Zhu, J. Li, Q. Xie et al., Efficacy and safety of apatinib monotherapy in advanced bone and soft tissue sarcoma: an observational study. Cancer Biol. Ther. 19, 198–204 (2018)
Article CAS PubMed PubMed Central Google Scholar
H.A. Tawbi, M. Burgess, V. Bolejack et al., Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493–1501 (2017)
Article CAS PubMed PubMed Central Google Scholar
A. Le Cesne, P. Marec-Berard, J.Y. Blay et al., Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study. Eur. J. Cancer. 119, 151–157 (2019)
L. Xie, J. Xu, X. Sun et al., Apatinib plus camrelizumab (anti-PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO) progressing after chemotherapy: a single-arm, open-label, phase 2 trial. J. Immunother Cancer, 8 (2020)
A.J. Saraf, J.M. Fenger, R.D. Roberts, Osteosarcoma: accelerating Progress makes for a Hopeful Future. Front. Oncol. 8, 4 (2018)
Article PubMed PubMed Central Google Scholar
R. Gorlick, P. Anderson, I. Andrulis et al., Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin. Cancer Res. 9, 5442–5453 (2003)
J. PosthumaDeBoer, M.A. Witlox, G.J. Kaspers et al., Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature. Clin. Exp. Metastasis. 28, 493–503 (2011)
Article CAS PubMed PubMed Central Google Scholar
Y. Suehara, D. Alex, A. Bowman et al., Clinical genomic sequencing of Pediatric and Adult Osteosarcoma reveals distinct molecular subsets with potentially targetable alterations. Clin. Cancer Res. 25, 6346–6356 (2019)
Article CAS PubMed PubMed Central Google Scholar
D. Wang, X. Niu, Z. Wang et al., Multiregion sequencing reveals the genetic heterogeneity and evolutionary history of Osteosarcoma and Matched Pulmonary metastases. Cancer Res. 79, 7–20 (2019)
Article CAS PubMed Google Scholar
K. Mulder, A.A. Patel, W.T. Kong et al., Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 54, 1883–1900 (2021). e1885
Article CAS PubMed Google Scholar
I. Tirosh, B. Izar, S.M. Prakadan et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 352, 189–196 (2016)
Article CAS PubMed PubMed Central Google Scholar
H.W. Lee, W. Chung, H.O. Lee et al., Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med. 12, 47 (2020)
Article PubMed PubMed Central Google Scholar
M.Z. Noman, M. Hasmim, A. Lequeux et al., Improving Cancer Immunotherapy by targeting the hypoxic Tumor Microenvironment: New opportunities and challenges. Cells, 8 (2019)
I. Corre, F. Verrecchia, V. Crenn et al., The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem, Cells, 9 (2020)
C. Hu, C. Liu, S. Tian et al., Comprehensive analysis of prognostic tumor microenvironment-related genes in osteosarcoma patients. BMC cancer. 20, 814 (2020)
Article CAS PubMed PubMed Central Google Scholar
C. Zhang, J.H. Zheng, Z.H. Lin et al., Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma. Aging. 12, 3486–3501 (2020)
Article CAS PubMed PubMed Central Google Scholar
Y. Han, W. Guo, T. Ren et al., Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett., 440–441 116–125 (2019)
K. Wolf-Dennen, N. Gordon, E.S. Kleinerman, Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Oncoimmunology. 9, 1747677 (2020)
Article PubMed PubMed Central Google Scholar
P. Dhupkar, N. Gordon, J. Stewart et al., Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 7, 2654–2664 (2018)
Article CAS PubMed PubMed Central Google Scholar
Q.K. Yang, Y.N. Su, W. Wang et al., CONUT score or/and peripheral blood CD4+/CD8 + ratio-based web dynamic nomograms to predict the individualized survival of patients with Advanced Osteosarcoma. Cancer Manag Res. 12, 4193–4208 (2020)
Comments (0)