Traditional Korean diet high in one-carbon nutrients increases global DNA methylation: implication for epigenetic diet

Shin PK, Kim MS, Park SJ, Kwon DY, Kim MJ, Yang HJ, Kim SH, Kim K, Chun S, Lee HJ, Choi SW (2020) A traditional Korean diet alters the expression of circulating MicroRNAs linked to diabetes mellitus in a pilot trial. Nutrients 12(9):2558. https://doi.org/10.3390/nu12092558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin PK, Park SJ, Kim MS, Kwon DY, Kim MJ, Kim K, Chun S, Lee HJ, Choi SW (2020) A traditional Korean diet with a low dietary inflammatory index increases anti-inflammatory IL-10 and decreases pro-inflammatory NF-kappaB in a small dietary intervention study. Nutrients 12(8):2468. https://doi.org/10.3390/nu12082468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin PK, Chun S, Kim MS, Park SJ, Kim MJ, Kwon DY, Kim K, Lee HJ, Choi SW (2020) Traditional Korean diet can alter the urine organic acid profile, which may reflect the metabolic influence of the diet. J Nutr Health 53(3):231

Article  CAS  Google Scholar 

Kim MJ, Park S, Yang HJ, Shin PK, Hur HJ, Park SJ, Lee KH, Hong M, Kim JH, Choi SW, Lee HJ, Kim MS (2022) Alleviation of dyslipidemia via a traditional balanced Korean diet represented by a low glycemic and low cholesterol diet in obese women in a randomized controlled trial. Nutrients 14(2):235. https://doi.org/10.3390/nu14020235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stover PJ, James WPT, Krook A, Garza C (2018) Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J Intern Med 284(1):37–49. https://doi.org/10.1111/joim.12768

Article  CAS  PubMed  Google Scholar 

Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518. https://doi.org/10.2217/epi.11.71

Article  CAS  PubMed  Google Scholar 

Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34(4):753–764. https://doi.org/10.1016/j.mam.2012.07.018

Article  CAS  PubMed  Google Scholar 

Friso S, Udali S, De Santis D, Choi SW (2017) One-carbon metabolism and epigenetics. Mol Aspects Med 54:28–36. https://doi.org/10.1016/j.mam.2016.11.007

Article  CAS  PubMed  Google Scholar 

Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L (2022) Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 14(1):62. https://doi.org/10.1186/s13148-022-01279-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alegria-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3(3):267–277. https://doi.org/10.2217/epi.11.22

Article  CAS  PubMed  Google Scholar 

Kim SH, Kim MS, Lee MS, Park YS, Lee HJ, Kang SA, Lee SH, Lee KE, Yang HJ, Kim HJ, Lee YE, Kwon DY (2016) Korean diet: characteristics and historical background. J Ethnic Foods 3:26–31

Article  Google Scholar 

Kwon DY (2016) Seoul declaration of Korean diet. J Ethnic Foods 3(1):1–4

Article  Google Scholar 

Friso S, Choi SW, Dolnikowski GG, Selhub J (2002) A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem 74(17):4526–4531. https://doi.org/10.1021/ac020050h

Article  CAS  PubMed  Google Scholar 

Kim SA, Shin S, Ha K, Hwang Y, Park YH, Kang MS, Joung H (2020) Effect of a balanced Korean diet on metabolic risk factors among overweight/obese Korean adults: a randomized controlled trial. Eur J Nutr 59(7):3023–3035. https://doi.org/10.1007/s00394-019-02141-y

Article  CAS  PubMed  Google Scholar 

Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130(2):129–132. https://doi.org/10.1093/jn/130.2.129

Article  CAS  PubMed  Google Scholar 

Lionaki E, Ploumi C, Tavernarakis N (2022) One-carbon metabolism: pulling the strings behind aging and neurodegeneration. Cells. https://doi.org/10.3390/cells11020214

Article  PubMed  PubMed Central  Google Scholar 

Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583. https://doi.org/10.1038/nrc3557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luka Z, Cerone R, Phillips JA 3rd, Mudd HS, Wagner C (2002) Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum Genet 110(1):68–74. https://doi.org/10.1007/s00439-001-0648-4

Article  CAS  PubMed  Google Scholar 

Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34(1):3–15. https://doi.org/10.1007/s10545-010-9088-4

Article  CAS  PubMed  Google Scholar 

Ueland PM, Holm PI, Hustad S (2005) Betaine: a key modulator of one-carbon metabolism and homocysteine status. Clin Chem Lab Med 43(10):1069–1075. https://doi.org/10.1515/CCLM.2005.187

Article  CAS  PubMed  Google Scholar 

Stipanuk MH (2020) Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J Nutr 150(Suppl 1):2494S-2505S. https://doi.org/10.1093/jn/nxaa094

Article  PubMed  Google Scholar 

Luka Z, Mudd SH, Wagner C (2009) Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem 284(34):22507–22511. https://doi.org/10.1074/jbc.R109.019273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tachikawa M, Watanabe M, Fukaya M, Sakai K, Terasaki T, Hosoya KI (2018) Cell-type-specific spatiotemporal expression of creatine biosynthetic enzyme S-adenosylmethionine: guanidinoacetate N-methyltransferase in developing mouse brain. Neurochem Res 43(2):500–510. https://doi.org/10.1007/s11064-017-2446-y

Article  CAS  PubMed  Google Scholar 

Grillo MA, Colombatto S (2008) S-adenosylmethionine and its products. Amino Acids 34(2):187–193. https://doi.org/10.1007/s00726-007-0500-9

Article  CAS  PubMed  Google Scholar 

Martinez-Una M, Varela-Rey M, Cano A, Fernandez-Ares L, Beraza N, Aurrekoetxea I, Martinez-Arranz I, Garcia-Rodriguez JL, Buque X, Mestre D, Luka Z, Wagner C, Alonso C, Finnell RH, Lu SC, Martinez-Chantar ML, Aspichueta P, Mato JM (2013) Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology 58(4):1296–1305. https://doi.org/10.1002/hep.26399

Article  CAS  PubMed  Google Scholar 

Mandaviya PR, Stolk L, Heil SG (2014) Homocysteine and DNA methylation: a review of animal and human literature. Mol Genet Metab 113(4):243–252. https://doi.org/10.1016/j.ymgme.2014.10.006

Article  CAS  PubMed  Google Scholar 

Azzini E, Ruggeri S, Polito A (2020) Homocysteine: its possible emerging role in at-risk population groups. Int J Mol Sci 21(4):1421. https://doi.org/10.3390/ijms21041421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577. https://doi.org/10.1146/annurev.nutr.24.012003.132418

Article  CAS 

Comments (0)

No login
gif