Shin PK, Kim MS, Park SJ, Kwon DY, Kim MJ, Yang HJ, Kim SH, Kim K, Chun S, Lee HJ, Choi SW (2020) A traditional Korean diet alters the expression of circulating MicroRNAs linked to diabetes mellitus in a pilot trial. Nutrients 12(9):2558. https://doi.org/10.3390/nu12092558
Article CAS PubMed PubMed Central Google Scholar
Shin PK, Park SJ, Kim MS, Kwon DY, Kim MJ, Kim K, Chun S, Lee HJ, Choi SW (2020) A traditional Korean diet with a low dietary inflammatory index increases anti-inflammatory IL-10 and decreases pro-inflammatory NF-kappaB in a small dietary intervention study. Nutrients 12(8):2468. https://doi.org/10.3390/nu12082468
Article CAS PubMed PubMed Central Google Scholar
Shin PK, Chun S, Kim MS, Park SJ, Kim MJ, Kwon DY, Kim K, Lee HJ, Choi SW (2020) Traditional Korean diet can alter the urine organic acid profile, which may reflect the metabolic influence of the diet. J Nutr Health 53(3):231
Kim MJ, Park S, Yang HJ, Shin PK, Hur HJ, Park SJ, Lee KH, Hong M, Kim JH, Choi SW, Lee HJ, Kim MS (2022) Alleviation of dyslipidemia via a traditional balanced Korean diet represented by a low glycemic and low cholesterol diet in obese women in a randomized controlled trial. Nutrients 14(2):235. https://doi.org/10.3390/nu14020235
Article CAS PubMed PubMed Central Google Scholar
Stover PJ, James WPT, Krook A, Garza C (2018) Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J Intern Med 284(1):37–49. https://doi.org/10.1111/joim.12768
Article CAS PubMed Google Scholar
Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518. https://doi.org/10.2217/epi.11.71
Article CAS PubMed Google Scholar
Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34(4):753–764. https://doi.org/10.1016/j.mam.2012.07.018
Article CAS PubMed Google Scholar
Friso S, Udali S, De Santis D, Choi SW (2017) One-carbon metabolism and epigenetics. Mol Aspects Med 54:28–36. https://doi.org/10.1016/j.mam.2016.11.007
Article CAS PubMed Google Scholar
Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L (2022) Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 14(1):62. https://doi.org/10.1186/s13148-022-01279-7
Article CAS PubMed PubMed Central Google Scholar
Alegria-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3(3):267–277. https://doi.org/10.2217/epi.11.22
Article CAS PubMed Google Scholar
Kim SH, Kim MS, Lee MS, Park YS, Lee HJ, Kang SA, Lee SH, Lee KE, Yang HJ, Kim HJ, Lee YE, Kwon DY (2016) Korean diet: characteristics and historical background. J Ethnic Foods 3:26–31
Kwon DY (2016) Seoul declaration of Korean diet. J Ethnic Foods 3(1):1–4
Friso S, Choi SW, Dolnikowski GG, Selhub J (2002) A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem 74(17):4526–4531. https://doi.org/10.1021/ac020050h
Article CAS PubMed Google Scholar
Kim SA, Shin S, Ha K, Hwang Y, Park YH, Kang MS, Joung H (2020) Effect of a balanced Korean diet on metabolic risk factors among overweight/obese Korean adults: a randomized controlled trial. Eur J Nutr 59(7):3023–3035. https://doi.org/10.1007/s00394-019-02141-y
Article CAS PubMed Google Scholar
Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130(2):129–132. https://doi.org/10.1093/jn/130.2.129
Article CAS PubMed Google Scholar
Lionaki E, Ploumi C, Tavernarakis N (2022) One-carbon metabolism: pulling the strings behind aging and neurodegeneration. Cells. https://doi.org/10.3390/cells11020214
Article PubMed PubMed Central Google Scholar
Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583. https://doi.org/10.1038/nrc3557
Article CAS PubMed PubMed Central Google Scholar
Luka Z, Cerone R, Phillips JA 3rd, Mudd HS, Wagner C (2002) Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum Genet 110(1):68–74. https://doi.org/10.1007/s00439-001-0648-4
Article CAS PubMed Google Scholar
Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34(1):3–15. https://doi.org/10.1007/s10545-010-9088-4
Article CAS PubMed Google Scholar
Ueland PM, Holm PI, Hustad S (2005) Betaine: a key modulator of one-carbon metabolism and homocysteine status. Clin Chem Lab Med 43(10):1069–1075. https://doi.org/10.1515/CCLM.2005.187
Article CAS PubMed Google Scholar
Stipanuk MH (2020) Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J Nutr 150(Suppl 1):2494S-2505S. https://doi.org/10.1093/jn/nxaa094
Luka Z, Mudd SH, Wagner C (2009) Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem 284(34):22507–22511. https://doi.org/10.1074/jbc.R109.019273
Article CAS PubMed PubMed Central Google Scholar
Tachikawa M, Watanabe M, Fukaya M, Sakai K, Terasaki T, Hosoya KI (2018) Cell-type-specific spatiotemporal expression of creatine biosynthetic enzyme S-adenosylmethionine: guanidinoacetate N-methyltransferase in developing mouse brain. Neurochem Res 43(2):500–510. https://doi.org/10.1007/s11064-017-2446-y
Article CAS PubMed Google Scholar
Grillo MA, Colombatto S (2008) S-adenosylmethionine and its products. Amino Acids 34(2):187–193. https://doi.org/10.1007/s00726-007-0500-9
Article CAS PubMed Google Scholar
Martinez-Una M, Varela-Rey M, Cano A, Fernandez-Ares L, Beraza N, Aurrekoetxea I, Martinez-Arranz I, Garcia-Rodriguez JL, Buque X, Mestre D, Luka Z, Wagner C, Alonso C, Finnell RH, Lu SC, Martinez-Chantar ML, Aspichueta P, Mato JM (2013) Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology 58(4):1296–1305. https://doi.org/10.1002/hep.26399
Article CAS PubMed Google Scholar
Mandaviya PR, Stolk L, Heil SG (2014) Homocysteine and DNA methylation: a review of animal and human literature. Mol Genet Metab 113(4):243–252. https://doi.org/10.1016/j.ymgme.2014.10.006
Article CAS PubMed Google Scholar
Azzini E, Ruggeri S, Polito A (2020) Homocysteine: its possible emerging role in at-risk population groups. Int J Mol Sci 21(4):1421. https://doi.org/10.3390/ijms21041421
Article CAS PubMed PubMed Central Google Scholar
Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577. https://doi.org/10.1146/annurev.nutr.24.012003.132418
Comments (0)