Ames BN (2006) Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A 103(47):17589–17594. https://doi.org/10.1073/pnas.0608757103
Article CAS PubMed PubMed Central Google Scholar
Di Renzo L, Gualtieri P, Romano L, Marrone G, Noce A, Pujia A, Perrone MA, Aiello V, Colica C, De Lorenzo A (2019) Role of Personalized Nutrition in Chronic-degenerative diseases. Nutrients 11:1707. https://doi.org/10.3390/nu11081707
Article CAS PubMed PubMed Central Google Scholar
Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485. https://doi.org/10.1056/NEJMra0804615
Article CAS PubMed Google Scholar
Ladeira C, Carolino E, Gomes MC, Brito M (2017) Role of macronutrients and micronutrients in DNA damage: results from a food frequency questionnaire. Nutr Metab Insights 10:1178638816684666. https://doi.org/10.1177/1178638816684666
Article CAS PubMed PubMed Central Google Scholar
Fenech MF, Bull CF, Van Klinken BJ (2023) Protective effects of Micronutrient supplements, phytochemicals and Phytochemical-Rich beverages and foods against DNA damage in humans: a systematic review of Randomized controlled trials and prospective studies. Adv Nutr 14(6):1337–1358. https://doi.org/10.1016/j.advnut.2023.08.004
Article CAS PubMed PubMed Central Google Scholar
Fenech M, Knasmueller S, Bolognesi C, Holland N, Bonassi S, Kirsch-Volders M (2020) Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res Rev Mutat Res 786:108342. https://doi.org/10.1016/j.mrrev.2020.108342
Article CAS PubMed Google Scholar
Romani AM (2011) Cellular magnesium homeostasis. Arch Biochem Biophys 512(1):1–23. https://doi.org/10.1016/j.abb.2011.05.010
Article CAS PubMed PubMed Central Google Scholar
de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46. https://doi.org/10.1152/physrev.00012.2014
Article CAS PubMed Google Scholar
Fiorentini D, Cappadone C, Farruggia G, Prata C (2021) Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to its Deficiency. Nutrients 13:1136. https://doi.org/10.3390/nu13041136
Article CAS PubMed PubMed Central Google Scholar
Severino P, Netti L, Mariani MV, Maraone A, D’Amato A, Scarpati R, Infusino F, Pucci M, Lavalle C, Maestrini V, Mancone M, Fedele F (2019) Prevention of Cardiovascular Disease: Screening for Magnesium Deficiency. Cardiol Res Pract 2019, 4874921. https://doi.org/10.1155/2019/4874921
Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305. https://doi.org/10.1093/nar/28.1.304
Article CAS PubMed PubMed Central Google Scholar
Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–753. https://doi.org/10.1093/nar/gkr1014
Article CAS PubMed Google Scholar
Wolf FI, Maier JA, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, Cittadini A (2007) Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys 458:24–32. https://doi.org/10.1016/j.abb.2006.02.016
Article CAS PubMed Google Scholar
Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M (2023) Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 299(8):104988. https://doi.org/10.1016/j.jbc.2023.104988
Article CAS PubMed PubMed Central Google Scholar
Dhillon VS, Deo P, Thomas P, Fenech M (2023) Low Magnesium in Conjunction with High Homocysteine and Less Sleep accelerates Telomere Attrition in Healthy Elderly Australian. Int J Mol Sci 24. https://doi.org/10.3390/ijms24020982
Cecchini MS, Bourckhardt GF, Jaramillo ML, Ammar D, Müller YMR, Nazari EM (2019) Exposure to homocysteine leads to cell cycle damage and reactive gliosis in the developing brain. Reprod Toxicol 87:60–69. https://doi.org/10.1016/j.reprotox.2019.05.054
Article CAS PubMed Google Scholar
Chen S, Honda T, Ohara T, Hata J, Hirakawa Y, Yoshida D, Shibata M, Sakata S, Oishi E, Furuta Y, Kitazono T, Ninomiya T (2020) Serum homocysteine and risk of dementia in Japan. J Neurol Neurosurg Psychiatry 91:540–546. https://doi.org/10.1136/jnnp-2019-322366
Bossenmeyer-Pourié C, Smith AD, Lehmann S, Deramecourt V, Sablonnière B, Camadro JM, Pourié G, Kerek R, Helle D, Umoret R, Guéant-Rodriguez RM, Rigau V, Gabelle A, Sequeira JM, Quadros EV, Daval JL, Guéant J (2019) L., N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol 248:291–303. https://doi.org/10.1002/path.5254
Article CAS PubMed Google Scholar
Tomic S, Pekic V, Popijac Z, Pucic T, Vinkovic MP, Kuric TG, Popovic Z (2018) Hyperhomocysteinemia influenced malnutrition in Parkinson’s disease patients. Neurol Sci 39:1691–1695. https://doi.org/10.1007/s10072-018-3480-5
Zhang Q, Bai B, Mei X, Wan C, Cao H, Dan L, Wang S, Zhang M, Wang Z, Wu J, Wang H, Huo J, Ding G, Zhao J, Xie Q, Wang L, Qiu Z, Zhao S, Zhang T (2018) Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat Commun 9:3436. https://doi.org/10.1038/s41467-018-05451-7
Article CAS PubMed PubMed Central Google Scholar
Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926. https://doi.org/10.1523/JNEUROSCI.20-18-06920.2000
Article CAS PubMed PubMed Central Google Scholar
Li H, Wang X, Zhao H, Wang F, Bao Y, Guo J, Chang S, Wu L, Cheng H, Chen S, Zou J, Cui X, Niswander L, Finnell RH, Wang H, Zhang T (2020) Low folate concentration impacts mismatch repair deficiency in neural tube defects. Epigenomics 12:5–18. https://doi.org/10.2217/epi-2019-0279
Article CAS PubMed Google Scholar
Pao PC, Patnaik D, Watson LA, Gao F, Pan L, Wang J, Adaikkan C, Penney J, Cam HP, Huang WC, Pantano L, Lee A, Nott A, Phan TX, Gjoneska E, Elmsaouri S, Haggarty SJ, Tsai LH (2020) HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease. Nat Commun 11:2484. https://doi.org/10.1038/s41467-020-16361-y
Article CAS PubMed PubMed Central Google Scholar
Lin X, Kapoor A, Gu Y, Chow MJ, Peng J, Zhao K, Tang D (2020) Contributions of DNA damage to Alzheimer’s Disease. Int J Mol Sci 21:1666. https://doi.org/10.3390/ijms21051666
Article CAS PubMed PubMed Central Google Scholar
Fenech M (2012) Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res 733:21–33. https://doi.org/10.1016/j.mrfmmm.2011.11.003
Article CAS PubMed Google Scholar
Yan Y, Yin Y, Feng X, Chen Y, Shi J, Weng H, Wang D (2020) Homocysteine aggravates DNA damage by impairing the FA/Brca1 pathway in NE4C murine neural stem cells. Int J Med Sci 17:2477–2486. https://doi.org/10.7150/ijms.49246
Article CAS PubMed PubMed Central Google Scholar
Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2(5):1084–1104.
Comments (0)