Low magnesium in conjunction with high homocysteine increases DNA damage in healthy middle aged Australians

Ames BN (2006) Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A 103(47):17589–17594. https://doi.org/10.1073/pnas.0608757103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Renzo L, Gualtieri P, Romano L, Marrone G, Noce A, Pujia A, Perrone MA, Aiello V, Colica C, De Lorenzo A (2019) Role of Personalized Nutrition in Chronic-degenerative diseases. Nutrients 11:1707. https://doi.org/10.3390/nu11081707

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485. https://doi.org/10.1056/NEJMra0804615

Article  CAS  PubMed  Google Scholar 

Ladeira C, Carolino E, Gomes MC, Brito M (2017) Role of macronutrients and micronutrients in DNA damage: results from a food frequency questionnaire. Nutr Metab Insights 10:1178638816684666. https://doi.org/10.1177/1178638816684666

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenech MF, Bull CF, Van Klinken BJ (2023) Protective effects of Micronutrient supplements, phytochemicals and Phytochemical-Rich beverages and foods against DNA damage in humans: a systematic review of Randomized controlled trials and prospective studies. Adv Nutr 14(6):1337–1358. https://doi.org/10.1016/j.advnut.2023.08.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenech M, Knasmueller S, Bolognesi C, Holland N, Bonassi S, Kirsch-Volders M (2020) Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res Rev Mutat Res 786:108342. https://doi.org/10.1016/j.mrrev.2020.108342

Article  CAS  PubMed  Google Scholar 

Romani AM (2011) Cellular magnesium homeostasis. Arch Biochem Biophys 512(1):1–23. https://doi.org/10.1016/j.abb.2011.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46. https://doi.org/10.1152/physrev.00012.2014

Article  CAS  PubMed  Google Scholar 

Fiorentini D, Cappadone C, Farruggia G, Prata C (2021) Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to its Deficiency. Nutrients 13:1136. https://doi.org/10.3390/nu13041136

Article  CAS  PubMed  PubMed Central  Google Scholar 

Severino P, Netti L, Mariani MV, Maraone A, D’Amato A, Scarpati R, Infusino F, Pucci M, Lavalle C, Maestrini V, Mancone M, Fedele F (2019) Prevention of Cardiovascular Disease: Screening for Magnesium Deficiency. Cardiol Res Pract 2019, 4874921. https://doi.org/10.1155/2019/4874921

Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305. https://doi.org/10.1093/nar/28.1.304

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–753. https://doi.org/10.1093/nar/gkr1014

Article  CAS  PubMed  Google Scholar 

Wolf FI, Maier JA, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, Cittadini A (2007) Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys 458:24–32. https://doi.org/10.1016/j.abb.2006.02.016

Article  CAS  PubMed  Google Scholar 

Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M (2023) Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 299(8):104988. https://doi.org/10.1016/j.jbc.2023.104988

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhillon VS, Deo P, Thomas P, Fenech M (2023) Low Magnesium in Conjunction with High Homocysteine and Less Sleep accelerates Telomere Attrition in Healthy Elderly Australian. Int J Mol Sci 24. https://doi.org/10.3390/ijms24020982

Cecchini MS, Bourckhardt GF, Jaramillo ML, Ammar D, Müller YMR, Nazari EM (2019) Exposure to homocysteine leads to cell cycle damage and reactive gliosis in the developing brain. Reprod Toxicol 87:60–69. https://doi.org/10.1016/j.reprotox.2019.05.054

Article  CAS  PubMed  Google Scholar 

Chen S, Honda T, Ohara T, Hata J, Hirakawa Y, Yoshida D, Shibata M, Sakata S, Oishi E, Furuta Y, Kitazono T, Ninomiya T (2020) Serum homocysteine and risk of dementia in Japan. J Neurol Neurosurg Psychiatry 91:540–546. https://doi.org/10.1136/jnnp-2019-322366

Article  PubMed  Google Scholar 

Bossenmeyer-Pourié C, Smith AD, Lehmann S, Deramecourt V, Sablonnière B, Camadro JM, Pourié G, Kerek R, Helle D, Umoret R, Guéant-Rodriguez RM, Rigau V, Gabelle A, Sequeira JM, Quadros EV, Daval JL, Guéant J (2019) L., N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol 248:291–303. https://doi.org/10.1002/path.5254

Article  CAS  PubMed  Google Scholar 

Tomic S, Pekic V, Popijac Z, Pucic T, Vinkovic MP, Kuric TG, Popovic Z (2018) Hyperhomocysteinemia influenced malnutrition in Parkinson’s disease patients. Neurol Sci 39:1691–1695. https://doi.org/10.1007/s10072-018-3480-5

Article  PubMed  Google Scholar 

Zhang Q, Bai B, Mei X, Wan C, Cao H, Dan L, Wang S, Zhang M, Wang Z, Wu J, Wang H, Huo J, Ding G, Zhao J, Xie Q, Wang L, Qiu Z, Zhao S, Zhang T (2018) Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat Commun 9:3436. https://doi.org/10.1038/s41467-018-05451-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926. https://doi.org/10.1523/JNEUROSCI.20-18-06920.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Wang X, Zhao H, Wang F, Bao Y, Guo J, Chang S, Wu L, Cheng H, Chen S, Zou J, Cui X, Niswander L, Finnell RH, Wang H, Zhang T (2020) Low folate concentration impacts mismatch repair deficiency in neural tube defects. Epigenomics 12:5–18. https://doi.org/10.2217/epi-2019-0279

Article  CAS  PubMed  Google Scholar 

Pao PC, Patnaik D, Watson LA, Gao F, Pan L, Wang J, Adaikkan C, Penney J, Cam HP, Huang WC, Pantano L, Lee A, Nott A, Phan TX, Gjoneska E, Elmsaouri S, Haggarty SJ, Tsai LH (2020) HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease. Nat Commun 11:2484. https://doi.org/10.1038/s41467-020-16361-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin X, Kapoor A, Gu Y, Chow MJ, Peng J, Zhao K, Tang D (2020) Contributions of DNA damage to Alzheimer’s Disease. Int J Mol Sci 21:1666. https://doi.org/10.3390/ijms21051666

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenech M (2012) Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res 733:21–33. https://doi.org/10.1016/j.mrfmmm.2011.11.003

Article  CAS  PubMed  Google Scholar 

Yan Y, Yin Y, Feng X, Chen Y, Shi J, Weng H, Wang D (2020) Homocysteine aggravates DNA damage by impairing the FA/Brca1 pathway in NE4C murine neural stem cells. Int J Med Sci 17:2477–2486. https://doi.org/10.7150/ijms.49246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2(5):1084–1104.

Comments (0)

No login
gif