Carroll AR, Lamb J, Moni R, Guymer GP, Forster PI, Quinn RJ (2008) Myrtucmmulones F-I, phloroglucinols with thyrotropin-releasing hormone receptor-2 binding affinity from the seeds of Corymbia scabrida. J Nat Prod 71:1564–1568. https://doi.org/10.1021/np800247u
Article CAS PubMed Google Scholar
Charpentier M, Jauch J (2017) Metal catalysed versus organocatalysed stereoselective synthesis: the concrete case of myrtucommulones. Tetrahedron 73:6614–6623. https://doi.org/10.1016/j.tet.2017.10.011
Dean RA, Fam HK, An J, Choi K, Shimizu Y, Jones SJ, Boerkoel CF, Interthal H, Pfeifer TA (2014) Identification of a putative tdp1 inhibitor (CD00509) by in vitro and cell-based assays. J Biomol Screen 19:1372–1382. https://doi.org/10.1177/1087057114546551
Article CAS PubMed Google Scholar
Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, Li R, Martinez LA (2012) Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 26:830–845. https://doi.org/10.1101/gad.181685.111
Article CAS PubMed PubMed Central Google Scholar
Hatano M, Goto Y, Izumiseki A, Akakura M, Ishihara K (2015) Boron tribromide-assisted chiral phosphoric acid catalyst for a highly enantioselective Diels-Alder reaction of 1,2-dihydropyridines. J Am Chem Soc 137:13472–13475. https://doi.org/10.1021/jacs.5b08693
Article CAS PubMed Google Scholar
Herzog BH, Devarakonda S, Govindan R (2021) Overcoming chemotherapy resistance in SCLC. J Thorac Oncol 16:2002–2015. https://doi.org/10.1016/j.jtho.2021.07.018
Article CAS PubMed Google Scholar
Kankanala J, Marchand C, Abdelmalak M, Aihara H, Pommier Y, Wang Z (2016) Isoquinoline-1,3-diones as selective inhibitors of tyrosyl DNA phosphodiesterase II (TDP2). J Med Chem 59:2734–2746. https://doi.org/10.1021/acs.jmedchem.5b01973
Article CAS PubMed PubMed Central Google Scholar
Kankanala J, Ribeiro CJA, Kiselev E, Ravji A, Williams J, Xie J, Aihara H, Pommier Y, Wang Z (2019) Novel deazaflavin analogues potently inhibited tyrosyl DNA phosphodiesterase 2 (TDP2) and strongly sensitized cancer cells toward treatment with topoisomerase II (TOP2) poison etoposide. J Med Chem 62:4669–4682. https://doi.org/10.1021/acs.jmedchem.9b00274
Article CAS PubMed PubMed Central Google Scholar
Kiselev E, Ravji A, Kankanla J, Xie J, Wang Z, Pommier Y (2020) Novel deazaflavin tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. DNA Repair 85:102747. https://doi.org/10.1016/j.dnarep.2019.102747
Article CAS PubMed Google Scholar
Komulainen E, Pennicott L, Le Grand D, Caldecott KW (2019) Deazaflavin inhibitors of TDP2 with cellular activity can affect etoposide influx and/or efflux. ACS Chem Biol 14:1110–1114. https://doi.org/10.1021/acschembio.9b00144
Article CAS PubMed PubMed Central Google Scholar
Kont YS, Dutta A, Mallisetty A, Mathew J, Minas T, Kraus C, Dhopeshwarkar P, Kallakury B, Mitra S, Üren A, Adhikari S (2016) Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing. DNA Repair 43:38–47. https://doi.org/10.1016/j.dnarep.2016.04.009
Article CAS PubMed Google Scholar
Kossmann BR, Abdelmalak M, Lopez S, Tender G, Yan C, Pommier Y, Marchand C, Ivanov I (2016) Discovery of selective inhibitors of tyrosyl-DNA phosphodiesterase 2 by targeting the enzyme DNA-binding cleft. Bioorg Med Chem Lett 26:3232–3236. https://doi.org/10.1016/j.bmcl.2016.05.065
Article CAS PubMed PubMed Central Google Scholar
Ledesma FC, El KSF, Zuma MC, Osborn K, Caldecott KW (2009) A human 5’-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461:674–678. https://doi.org/10.1038/nature08444
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7:339–348. https://doi.org/10.15171/apb.2017.041
Marchand C, Abdelmalak M, Kankanala J, Huang SY, Kiselev E, Fesen K, Kurahashi K, Sasanuma H, Takeda S, Aihara H, Wang Z, Pommier Y (2016) Deazaflavin inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2) specific for the human enzyme and active against cellular TDP2. ACS Chem Biol 11:1925–1933. https://doi.org/10.1021/acschembio.5b01047
Article CAS PubMed PubMed Central Google Scholar
Nicoletti R, Ferranti P, Caira S, Misso G, Castellano M, Di Lorenzo G, Caraglia M (2014) Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World J Microbiol Biotechnol 30:1047–1052. https://doi.org/10.1007/s11274-013-1523-x
Article CAS PubMed Google Scholar
Pommier Y, Huanga SY, Gao R, Das BB, Murai J, Marchand C (2014) Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 23:114–129. https://doi.org/10.1016/j.dnarep.2014.03.020
Raoof A, Depledge P, Hamilton NM, Hamilton NS, Hitchin JR, Hopkins GV, Jordan AM, Maguire LA, McGonagle AE, Mould DP, Rushbrooke M, Small HF, Smith KM, Thomson GJ, Turlais F, Waddell ID, Waszkowycz B, Watson AJ, Ogilvie DJ (2013) Toxoflavins and deazaflavins as the first reported selective small molecule inhibitors of tyrosyl-DNA phosphodiesterase II. J Med Chem 56:6352–6370. https://doi.org/10.1021/jm400568p
Article CAS PubMed Google Scholar
Ribeiro CJA, Kankanala J, Shi K, Kurahashi K, Kiselev E, Ravji A, Pommier Y, Aihara H, Wang Z (2018) New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur J Pharm Sci 118:67–79. https://doi.org/10.1016/j.ejps.2018.03.021
Article CAS PubMed PubMed Central Google Scholar
Ribeiro CJA, Kankanala J, Xie J, Williams J, Aihara H, Wang Z (2019) Triazolopyrimidine and triazolopyridine scaffolds as TDP2 inhibitors. Bioorg Med Chem Lett 29:257–261. https://doi.org/10.1016/j.bmcl.2018.11.044
Article CAS PubMed Google Scholar
Shaheen F, Ahmad M, Khan SN, Hussain SS, Anjum S, Tashkhodjaev B, Turgunov K, Sultankhodzhaev MN, Choudhary MI, Atta-ur-Rahman (2006) New α-glucosidase inhibitors and antibacterial compounds from Myrtus communis L. Eur J Org Chem 10:2371–2377. https://doi.org/10.1002/ejoc.200500936
Wang P, Elsayed MSA, Plescia CB, Ravji A, Redon CE, Kiselev E, Marchand C, Zeleznik O, Agama K, Pommier Y, Cushman M (2017) Synthesis and biological evaluation of the first triple inhibitors of human topoisomerase 1, tyrosyl–DNA phosphodiesterase 1 (Tdp1), and tyrosyl–DNA phosphodiesterase 2 (Tdp2). J Med Chem 60:3275–3288. https://doi.org/10.1021/acs.jmedchem.6b01565
Article CAS PubMed PubMed Central Google Scholar
Wiechmann K, Müller H, Huch V, Hartmann D, Werz O, Jauch J (2015) Synthesis and biological evaluation of novel myrtucommulones and structural analogues that target mPGES-1 and 5-lipoxygenase. Eur J Med Chem 101:133–149. https://doi.org/10.1016/j.ejmech.2015.06.001
Article CAS PubMed Google Scholar
Wu Y, Chen M, Wang WJ, Li NP, Ye WC, Wang L (2020) Phloroglucinol derivatives from Myrtus communis ‘Variegata’ and their antibacterial activities. Chem Biodivers 17:e2000292. https://doi.org/10.1002/cbdv.202000292
Article CAS PubMed Google Scholar
Yang H, Zhu XQ, Wang W, Chen Y, Hu Z, Zhang Y, Hu DX, Yu LM, Agama K, Pommier Y, An LK (2021) The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selective tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. Bioorg Chem 111:104881. https://doi.org/10.1016/j.bioorg.2021.104881
Article CAS PubMed PubMed Central Google Scholar
Yu LM, Hu Z, Chen Y, Ravji A, Lopez S, Plescia CB, Yu Q, Yang H, Abdelmalak M, Saha S, Agama K, Kiselev E, Marchand C, Pommier Y, An LK (2018) Synthesis and structure-activity relationship of furoquinolinediones as inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur J Med Chem 151:777–796. https://doi.org/10.1016/j.ejmech.2018.04.024
Article CAS PubMed PubMed Central Google Scholar
Zeng Z, Cortés-Ledesma F, El Khamisy SF, Caldecott KW (2011) TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J Biol Chem 286:403–409. https://doi.org/10.1074/jbc.M110.181016
Comments (0)