Kyu HH, Stein CE, Boschi Pinto C et al (2018) Causes of death among children aged 5–14 years in the WHO European Region: a systematic analysis for the global burden of Disease Study 2016. Lancet Child Adolesc Heal 2:321–337. https://doi.org/10.1016/S2352-4642(18)30095-6
Janssen JM, Dorlo TPC, Steeghs N et al (2020) Pharmacokinetic targets for therapeutic drug monitoring of small molecule kinase inhibitors in Pediatric Oncology. Clin Pharmacol Ther 108:494–505. https://doi.org/10.1002/cpt.1808
Kaczmarska A, Śliwa P, Lejman M, Zawitkowska J (2021) The use of inhibitors of tyrosine kinase in Paediatric Haemato-Oncology-when and why? Int J Mol Sci 22. https://doi.org/10.3390/ijms222112089
Verschuur AC, Bajčiová V, Mascarenhas L et al (2019) Sunitinib in pediatric patients with advanced gastrointestinal stromal tumor: results from a phase I/II trial. Cancer Chemother Pharmacol 84:41–50. https://doi.org/10.1007/s00280-019-03814-5
Article CAS PubMed PubMed Central Google Scholar
EMA (2018) Reflection paper on the use of extrapolation in the development of medicines for paediatrics
EMA/CHMP (2022) Structured guidance on the use of extrapolation
Burckart G, Pediatric Extrapolation (2023) Jul in FDA Submissions – Sources of Data. https://www.ema.europa.eu/en/documents/presentation/presentation-paediatric-extrapolation-fda-submissions-sources-data-g-burckart_en.pdf. Accessed 30
Mulugeta L, Experience in FDA Submissions with Matching Pediatric Drug Exposure to Adult Drug Exposure. https://www.pharmacy.umaryland.edu/media/SOP/wwwpharmacyumarylandedu/centers/cersievents/pediatricpbpk/Mulugeta-exposure matching in FDA submissions_final2.pdf. Accessed 30 Jul 2023
Champagne MA, Capdeville R, Krailo M et al (2004) Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood 104:2655–2660. https://doi.org/10.1182/blood-2003-09-3032
Article CAS PubMed Google Scholar
Zwaan CM, Rizzari C, Mechinaud F et al (2013) Dasatinib in Children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the innovative therapies for children with Cancer Consortium. J Clin Oncol 31:2460–2468. https://doi.org/10.1200/JCO.2012.46.8280
Article CAS PubMed Google Scholar
Hijiya N, Zwaan CM, Rizzari C et al (2020) Pharmacokinetics of Nilotinib in Pediatric patients with Philadelphia chromosome–positive chronic myeloid leukemia or Acute Lymphoblastic Leukemia. Clin Cancer Res 26:812–820. https://doi.org/10.1158/1078-0432.CCR-19-0090
Article CAS PubMed Google Scholar
Widemann BC, Kim A, Fox E et al (2012) A phase I trial and pharmacokinetic study of sorafenib in children with refractory solid tumors or leukemias: a children’s Oncology Group Phase I Consortium report. Clin cancer Res off J Am Assoc Cancer Res 18:6011–6022. https://doi.org/10.1158/1078-0432.CCR-11-3284
Meneses-Lorente G, Guerini E, Mercier F et al (2023) Entrectinib dose confirmation in pediatric oncology patients: pharmacokinetic considerations. Cancer Chemother Pharmacol 91:239–246. https://doi.org/10.1007/s00280-023-04510-1
Article CAS PubMed PubMed Central Google Scholar
Balis FM, Thompson PA, Mosse YP et al (2017) First-dose and steady-state pharmacokinetics of orally administered crizotinib in children with solid tumors: a report on ADVL0912 from the Children’s Oncology Group Phase 1/Pilot Consortium. Cancer Chemother Pharmacol 79:181–187. https://doi.org/10.1007/s00280-016-3220-6
Article CAS PubMed Google Scholar
Mossé YP, Lim MS, Voss SD et al (2013) Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol 14:472–480. https://doi.org/10.1016/S1470-2045(13)70095-0
Article CAS PubMed PubMed Central Google Scholar
De Cock RFW, Piana C, Krekels EHJ et al (2011) The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol 67 Suppl 1:5–16. https://doi.org/10.1007/s00228-009-0782-9
Wang K, Jiang K, Wei X et al (2021) Physiologically based pharmacokinetic models are effective support for Pediatric Drug Development. AAPS PharmSciTech 22:208. https://doi.org/10.1208/s12249-021-02076-w
Calvier EAM, Krekels EHJ, Välitalo PAJ et al (2017) Allometric scaling of Clearance in Paediatric patients: when does the magic of 0.75 fade? Clin Pharmacokinet 56:273–285. https://doi.org/10.1007/s40262-016-0436-x
Mould DR, Upton RN (2013) Basic concepts in Population modeling, Simulation, and model-based Drug Development—Part 2: introduction to Pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol 2:38. https://doi.org/10.1038/psp.2013.14
Jones HM, Rowland-Yeo K (2013) Basic concepts in physiologically based pharmacokinetic modeling in Drug Discovery and Development. CPT Pharmacometrics Syst Pharmacol 2:63. https://doi.org/10.1038/psp.2013.41
Mahmood I, Tegenge MA (2019) A comparative study between Allometric Scaling and physiologically based pharmacokinetic modeling for the prediction of drug Clearance from neonates to adolescents. J Clin Pharmacol 59:189–197. https://doi.org/10.1002/jcph.1310
Article CAS PubMed Google Scholar
Holford N, Heo Y-A, Anderson B (2013) A Pharmacokinetic Standard for Babies and adults. J Pharm Sci 102:2941–2952. https://doi.org/10.1002/jps.23574
Article CAS PubMed Google Scholar
Anderson BJ, Holford NHG (2009) Mechanistic basis of using body size and maturation to Predict Clearance in humans. Drug Metab Pharmacokinet 24:25–36. https://doi.org/10.2133/dmpk.24.25
Article CAS PubMed Google Scholar
Heimbach T, Lin W, Hourcade-Potelleret F et al (2019) Physiologically based pharmacokinetic modeling to supplement Nilotinib Pharmacokinetics and confirm dose selection in Pediatric patients. J Pharm Sci 108:2191–2198. https://doi.org/10.1016/j.xphs.2019.01.028
Article CAS PubMed Google Scholar
Krekels EHJ, Calvier EAM, van der Graaf PH, Knibbe CAJ (2019) Children are not small adults, but can we treat them as such? CPT Pharmacometrics Syst Pharmacol 8:34–38. https://doi.org/10.1002/psp4.12366
Article CAS PubMed PubMed Central Google Scholar
Wu Q, Peters SA (2019) A retrospective evaluation of Allometry, Population Pharmacokinetics, and physiologically-based pharmacokinetics for Pediatric Dosing using clearance as a surrogate. CPT Pharmacometrics Syst Pharmacol 8:220–229. https://doi.org/10.1002/psp4.12385
Article CAS PubMed PubMed Central Google Scholar
Ke APBPK (2023) Jul modeling and allometric scaling in pediatric drug development: where do we draw the line? https://cersi.umd.edu/sites/cersi.umd.edu/files/Day 1 Slide Set %281%29-1-83.pdf. Accessed 30
Lankheet NAG, Desar IME, Mulder SF et al (2017) Optimizing the dose in cancer patients treated with imatinib, sunitinib and pazopanib. Br J Clin Pharmacol 83:2195–2204. https://doi.org/10.1111/bcp.13327
Article CAS PubMed PubMed Central Google Scholar
Yu H, Steeghs N, Kloth JSL et al (2015) Integrated semi-physiological pharmacokinetic model for both sunitinib and its active metabolite SU12662. Br J Clin Pharmacol 79:809–819. https://doi.org/10.1111/bcp.12550
Article CAS PubMed PubMed Central Google Scholar
Yu H, van Erp N, Bins S et al (2017) Development of a pharmacokinetic model to describe the Complex Pharmacokinetics of Pazopanib in Cancer patients. Clin Pharmacokinet 56:293–303. https://doi.org/10.1007/s40262-016-0443-y
Article CAS PubMed Google Scholar
Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of Imatinib. Clin Pharmacokinet 44:879–894. https://doi.org/10.2165/00003088-200544090-00001
Article CAS PubMed Google Scholar
Willmann S, Lippert J, Sevestre M et al (2003) PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. BIOSILICO 1:121–124. https://doi.org/10.1016/S1478-5382(03)02342-4
Kabir MZ, Tee W-V, Mohamad SB et al (2017) Comprehensive insight in
Comments (0)