Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate genes with 4hydroxycyclophosphamide formation in children with Cancer

1. Raccor BS, Claessens AJ, Dinh JC, Park JR, Hawkins DS, Thomas SS, Makar KW, McCune JS, Totah RA (2012) Potential contribution of cytochrome P450 2B6 to hepatic 4-hydroxycyclophosphamide formation in vitro and in vivo. Drug Metab Dispos 40 (1):54–63. doi:10.1124/dmd.111.039347

2. Kalhorn TF, Howald WN, Cole S, Phillips B, Wang J, Slattery JT, McCune JS (2006) Rapid quantitation of cyclophosphamide metabolites in plasma by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 835 (1–2):105–113

3. de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44 (11):1135–1164

4. Pinto N, Navarro SL, Rimorin C, Wurscher M, Hawkins DS, McCune JS (2021) Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate genes with event-free survival in intermediate-risk rhabdomyosarcoma: A report from the Children’s Oncology Group. Pediatr Blood Cancer 68 (11):e29203. doi: 29210.21002/pbc.29203. doi:10.1002/pbc.29203

5. Pinto N, Ludeman SM, Dolan ME (2009) Drug focus: Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 10 (12):1897–1903. doi:10.2217/pgs.09.134

6. Hines RN, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300 (2):355–360

7. McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300 (2):361–366

8. Qiu R, Kalhorn TF, Slattery JT (2004) ABCC2-mediated biliary transport of 4-glutathionylcyclophosphamide and its contribution to elimination of 4-hydroxycyclophosphamide in rat. J Pharmacol Exp Ther 308 (3):1204–1212

9. Shen R, Fan JB, Campbell D, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Wickham Garcia E, McBride C, Steemers F, Garcia F, Kermani BG, Gunderson K, Oliphant A (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res 573 (1–2):70–82. doi:10.1016/j.mrfmmm.2004.07.022

10. Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The International HapMap Project Web site. Genome Res 15 (11):1592–1593. doi:10.1101/gr.4413105

11. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Royal Statist Soc Serial B 57 (1):289–300

12. Lindley C, Hamilton G, McCune JS, Faucette S, Shord SS, Hawke RL, Wang H, Gilbert D, Jolley S, Yan B, LeCluyse EL (2002) The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos 30 (7):814–822

13. McCune JS, Salinger DH, Vicini P, Oglesby C, Blough DK, Park JR (2009) Population pharmacokinetics of cyclophosphamide and metabolites in children with neuroblastoma: a report from the Children’s Oncology Group. J Clin Pharmacol 49 (1):88–102

14. Chinnaswamy G, Errington J, Foot A, Boddy AV, Veal GJ, Cole M (2011) Pharmacokinetics of cyclophosphamide and its metabolites in paediatric patients receiving high-dose myeloablative therapy. Eur J Cancer 47 (10):1556–1563. doi:10.1016/j.ejca.2011.03.008

15. Veal GJ, Cole M, Chinnaswamy G, Sludden J, Jamieson D, Errington J, Malik G, Hill CR, Chamberlain T, Boddy AV (2016) Cyclophosphamide pharmacokinetics and pharmacogenetics in children with B-cell non-Hodgkin’s lymphoma. Eur J Cancer 55:56–64. doi:10.1016/j.ejca.2015.12.007

16. Barnett S, Errington J, Sludden J, Jamieson D, Poinsignon V, Paci A, Veal GJ (2021) Pharmacokinetics and Pharmacogenetics of Cyclophosphamide in a Neonate and Infant Childhood Cancer Patient Population. Pharmaceuticals (Basel) 14 (3). doi:10.3390/ph14030272

17. Campagne O, Zhong B, Nair S, Lin T, Huang J, Onar-Thomas A, Robinson G, Gajjar A, Stewart CF (2020) Exposure-Toxicity Association of Cyclophosphamide and Its Metabolites in Infants and Young Children with Primary Brain Tumors: Implications for Dosing. Clin Cancer Res 26 (7):1563–1573. doi:10.1158/1078-0432.CCR-19-2685

18. Yule SM, Price L, Cole M, Pearson AD, Boddy AV (1999) Cyclophosphamide metabolism in children with Fanconi’s anaemia. Bone Marrow Transplant 24 (2):123–128. doi:10.1038/sj.bmt.1701868

19. Children’s Oncology Group. Comparing Two Different Myeloablation Therapies in Treating Young Patients Who Are Undergoing a Stem Cell Transplant for High-Risk Neuroblastoma. https://classic.clinicaltrials.gov/ct2/show/results/NCT00567567. Accessed February 18 2024

20. McCune JS, Nakamura R, O’Meally D, Randolph TW, Sandmaier BM, Karolak A, Hockenbery D, Navarro SL (2022) Pharmacometabonomic association of cyclophosphamide 4-hydroxylation in hematopoietic cell transplant recipients. Clin Transl Sci 15 (5):1215–1224. doi:10.1111/cts.13239

21. Navarro SL, Zheng Z, Randolph TW, Nakamura R, Sandmaier BM, Hockenbery D, McCune JS (2022) Lipidomics of cyclophosphamide 4-hydroxylation in patients receiving post-transplant cyclophosphamide. Clin Transl Sci 15 (11):2772–2780. doi:10.1111/cts.13404

Comments (0)

No login
gif