A cross-tissue transcriptome-wide association study reveals novel susceptibility genes for migraine

Migraine (2022) Nat Rev Dis Primers 8(1:1). https://doi.org/10.1038/s41572-022-00335-z

Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z (2020) Lifting The Burden: the Global Campaign against H. Migraine remains second among the world’s causes of disability, and first among young women: findings from GBD2019. J Headache Pain 21(1:137). https://doi.org/10.1186/s10194-020-01208-0

Collaborators GBDN (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol 18 5:459–480. https://doi.org/10.1016/S1474-4422(18)30499-X

Article  Google Scholar 

Stovner LJ, Hagen K, Linde M, Steiner TJ (2022) The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain 23(1:34). https://doi.org/10.1186/s10194-022-01402-2

Russell MB, Hilden J, Sørensen SA, Olesen J (1993) Familial occurrence of migraine without aura and migraine with aura. Neurology 43 7:1369–1373. https://doi.org/10.1212/wnl.43.7.1369

Article  Google Scholar 

Russell MB, Olesen J (1995) Increased familial risk and evidence of genetic factor in migraine. BMJ 311 7004:541–544. https://doi.org/10.1136/bmj.311.7004.541

Article  Google Scholar 

Grangeon L, Lange KS, Waliszewska-Prosol M, Onan D, Marschollek K, Wiels W et al (2023) Genetics of migraine: where are we now? J Headache Pain 24(1:12). https://doi.org/10.1186/s10194-023-01547-8

Hautakangas H, Winsvold BS, Ruotsalainen SE, Bjornsdottir G, Harder AVE, Kogelman LJA et al (2022) Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat Genet 54(2):152–160. https://doi.org/10.1038/s41588-021-00990-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337 6099:1190–1195. https://doi.org/10.1126/science.1222794

Article  CAS  Google Scholar 

Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20 8:467–484. https://doi.org/10.1038/s41576-019-0127-1

Article  CAS  Google Scholar 

Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ et al (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47 9:1091–1098. https://doi.org/10.1038/ng.3367

Article  CAS  Google Scholar 

Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM et al (2019) A statistical framework for cross-tissue transcriptome-wide association analysis. Nat Genet 51 3:568–576. https://doi.org/10.1038/s41588-019-0345-7

Article  CAS  Google Scholar 

Ni J, Wang P, Yin KJ, Yang XK, Cen H, Sui C et al (2022) Novel insight into the aetiology of rheumatoid arthritis gained by a cross-tissue transcriptome-wide association study. RMD Open 8(2). https://doi.org/10.1136/rmdopen-2022-002529

Zhu M, Fan J, Zhang C, Xu J, Yin R, Zhang E et al (2021) A cross-tissue transcriptome-wide association study identifies novel susceptibility genes for lung cancer in Chinese populations. Hum Mol Genet 30 17:1666–1676. https://doi.org/10.1093/hmg/ddab119

Article  CAS  Google Scholar 

Rodriguez-Fontenla C, Carracedo A (2021) UTMOST, a single and cross-tissue TWAS (transcriptome wide association study), reveals new ASD (autism spectrum disorder) associated genes. Transl Psychiatry 11(1:256). https://doi.org/10.1038/s41398-021-01378-8

Welander NZ, Rukh G, Rask-Andersen M, Harder AVE, International Headache Genetics C, van den Maagdenberg A et al (2023) Migraine, inflammatory bowel disease and celiac disease: a mendelian randomization study. Headache 63 5:642–651. https://doi.org/10.1111/head.14470

Article  Google Scholar 

Zhang W, Zhang L, Yang L, Xiao C, Wu X, Yan P et al (2023) Migraine, chronic kidney disease and kidney function: observational and genetic analyses. Hum Genet 142 8:1185–1200. https://doi.org/10.1007/s00439-023-02575-9

Article  Google Scholar 

Gui J, Meng L, Huang D, Wang L, Yang X, Ding R et al (2024) Identification of novel proteins for sleep apnea by integrating genome-wide association data and human brain proteomes. Sleep Med 114:92–99. https://doi.org/10.1016/j.sleep.2023.12.026

Article  PubMed  Google Scholar 

de Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11 4:e1004219. https://doi.org/10.1371/journal.pcbi.1004219

Article  CAS  Google Scholar 

The Genotype-Tissue (2013) Expression (GTEx) project. Nat Genet 45 6:580–585. https://doi.org/10.1038/ng.2653

Article  CAS  Google Scholar 

Sun R, Hui S, Bader GD, Lin X, Kraft P (2019) Powerful gene set analysis in GWAS with the Generalized Berk-Jones statistic. PLoS Genet 15(3):e1007530. https://doi.org/10.1371/journal.pgen.1007530

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW et al (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48 3:245–252. https://doi.org/10.1038/ng.3506

Article  CAS  Google Scholar 

Li SJ, Shi JJ, Mao CY, Zhang C, Xu YF, Fan Y et al (2023) Identifying causal genes for migraine by integrating the proteome and transcriptome. J Headache Pain 24(1:111). https://doi.org/10.1186/s10194-023-01649-3

Liao C, Laporte AD, Spiegelman D, Akçimen F, Joober R, Dion PA et al (2019) Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat Commun 10(1:4450). https://doi.org/10.1038/s41467-019-12450-9

de Leeuw CA, Neale BM, Heskes T, Posthuma D (2016) The statistical properties of gene-set analysis. Nat Rev Genet 17 6:353–364. https://doi.org/10.1038/nrg.2016.29

Article  CAS  Google Scholar 

de Leeuw CA, Stringer S, Dekkers IA, Heskes T, Posthuma D (2018) Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure. Nat Commun 9(1:3768). https://doi.org/10.1038/s41467-018-06022-6

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7. https://doi.org/10.7554/eLife.34408

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C et al (2014) Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10 5:e1004383. https://doi.org/10.1371/journal.pgen.1004383

Article  CAS  Google Scholar 

Huang S, Wang J, Liu N, Li P, Wu S, Qi L et al (2023) A cross-tissue transcriptome association study identifies key genes in essential hypertension. Front Genet 14:1114174. https://doi.org/10.3389/fgene.2023.1114174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(1 Suppl 1):S4. https://doi.org/10.1186/gb-2008-9-s1-s4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 214–220 38 Web Server issue:W. https://doi.org/10.1093/nar/gkq537

Ghaffar A, International Headache Genetics C, Nyholt DR (2023) Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Hum Genet 142 8:1113–1137. https://doi.org/10.1007/s00439-023-02568-8

Article  CAS  Google Scholar 

Meyers TJ, Yin J, Herrera VA, Pressman AR, Hoffmann TJ, Schaefer C et al (2023) Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine. HGG Adv 4 3:100211. https://doi.org/10.1016/j.xhgg.2023.100211

Article  CAS  Google Scholar 

The GTEx (2020) Consortium atlas of genetic regulatory effects across human tissues. Science 369 6509:1318–1330. https://doi.org/10.1126/science.aaz1776

Article  CAS  Google Scholar 

Zhu N, Zhao Y, Mi M, Lu Y, Tan Y, Fang X et al (2022) REV1: a novel biomarker and potential therapeutic target for various cancers. Front Genet 13:997970. https://doi.org/10.3389/fgene.2022.997970

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi T, Niu X, Qin C, Xiao W (2021) Genetic and physical interactions between Polη and Rev1 in response to UV-induced DNA damage in mammalian cells. Sci Rep 11(1:21364). https://doi.org/10.1038/s41598-021-00878-3

Kim H, Yang K, Dejsuphong D, D’Andrea AD (2012) Regulation of Rev1 by the fanconi anemia core complex. Nat Struct Mol Biol 19(2):164–170. https://doi.org/10.1038/nsmb.2222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panhuis IH, Tsaalbi-Shtylik W, Schonke A, van Harmelen M, Pronk V, Streefland ACM (2022) Rev1 deficiency induces replication stress to cause metabolic dysfunction differently in males and females. Am J Physiol Endocrinol Metab 322(3):E319–E29. https://doi.org/10.1152/ajpendo.00357.2021

Article  CAS  Google Scholar 

Geyik S, Altunisik E, Neyal AM, Taysi S (2016) Oxidative stress and DNA damage in patients with migraine. J Headache Pain 17:10. https://doi.org/10.1186/s10194-016-0606-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akgun N, Aciman Demirel E, Acikgoz M, Celebi U, Kokturk F, Atasoy HT (2021) The effect of weather variables on the severity, duration, and frequency of headache attacks in the cases of episodic migraine and episodic tension-type headache. Turk J Med Sci 51 3:1406–1412. https://doi.org/10.3906/sag-2004-66

Article 

Comments (0)

No login
gif