Koulenti D, Xu E, Song A, et al. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8020191.
Article PubMed PubMed Central Google Scholar
Jiang J, Hou Y, Duan M, et al. Design, synthesis and antibacterial evaluation of novel oxazolidinone derivatives nitrogen-containing fused heterocyclic moiety. Bioorg Med Chem Lett. 2021;32:127660. https://doi.org/10.1016/j.bmcl.2020.127660.
Article CAS PubMed Google Scholar
Rabon AD, Fisher JP, MacVane SH. Incidence and risk factors for development of thrombocytopenia in patients treated with linezolid for 7 days or greater. Ann Pharmacother. 2018;52:1162–4. https://doi.org/10.1177/1060028018783498.
Lan SH, Lin WT, Chang SP, et al. Tedizolid versus linezolid for the treatment of acute bacterial skin and skin structure infection: a systematic review and meta-analysis. Antibiotics. 2019. https://doi.org/10.3390/antibiotics8030137.
Article PubMed PubMed Central Google Scholar
Swaney SM, Aoki H, Ganoza MC, Shinabarger DL. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agent Chemother. 1998;42:3251–5. https://doi.org/10.1128/aac.42.12.3251.
Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Expert Rev Anti Infect Ther. 2016;14:901–15.
Article CAS PubMed Google Scholar
Wright A, Deane-Alder K, Marschall E, et al. Characterization of the core ribosomal binding region for the oxazolidone family of antibiotics using Cryo-EM. ACS Pharmacol Transl Sci. 2020;3:425–32. https://doi.org/10.1021/acsptsci.0c00041.
Article CAS PubMed PubMed Central Google Scholar
Gordeev MF, Yuan ZY. New potent antibacterial oxazolidinone (MRX-I) with an improved class safety profile. J Med Chem. 2014;57:4487–97. https://doi.org/10.1021/jm401931e.
Article CAS PubMed Google Scholar
Li CR, Zhai QQ, Wang XK, et al. In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob Agent Chemother. 2014;58:2418–21. https://doi.org/10.1128/aac.01526-13.
Carvalhaes CG, Duncan LR, Wang W, Sader HS. In vitro activity and potency of the novel oxazolidinone contezolid (MRX-I) tested against gram-positive clinical isolates from the United States and Europe. Antimicrob Agent Chemother. 2020. https://doi.org/10.1128/aac.01195-20.
Guo Y, Han R, Zhang G, et al. Setting of the tentative epidemiological cut-off values of contezolid for Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae and Streptococcus agalactiae. J Antimicrob Chemother. 2023. https://doi.org/10.1093/jac/dkad045.
Huang Y, Xu Y, Liu S, et al. Selection and characterisation of Staphylococcus aureus mutants with reduced susceptibility to the investigational oxazolidinone MRX-I. Int J Antimicrob Agent. 2014;43:418–22. https://doi.org/10.1016/j.ijantimicag.2014.02.008.
Wang S, Cai C, Shen Y, et al. In vitro activity of contezolid against methicillin-resistant staphylococcus aureus, vancomycin-resistant enterococcus, and strains with linezolid resistance genes from China. Front Microbiol. 2021;12:729900. https://doi.org/10.3389/fmicb.2021.729900.
Article PubMed PubMed Central Google Scholar
Shoen C, DeStefano M, Hafkin B, Cynamon M. In vitro and in vivo activities of contezolid (MRX-I) against mycobacterium tuberculosis. Antimicrob Agent Chemother. 2018;62:e00493-e518. https://doi.org/10.1128/AAC.00493-18.
Wang C, Wang G, Huo F, et al. Novel oxazolidinones harbor potent in vitro activity against the clinical isolates of multidrug-resistant mycobacterium tuberculosis in China. Front Med. 2022;9:1067516. https://doi.org/10.3389/fmed.2022.1067516.
Guo Q, Xu L, Tan F, et al. A novel oxazolidinone, contezolid (MRX-I), expresses anti-mycobacterium abscessus activity in vitro. Antimicrob Agent Chemother. 2021;65:e0088921. https://doi.org/10.1128/aac.00889-21.
Almeida D, Li SY, Lee J, et al. Contezolid can replace linezolid in a novel combination with bedaquiline and pretomanid in a murine model of tuberculosis. Antimicrob Agent Chemother. 2023. https://doi.org/10.1128/aac.00789-23.
Gao S, Nie W, Liu L, et al. Antibacterial activity of the novel oxazolidinone contezolid (MRX-I) against mycobacterium abscessus. Front Cell Infect Microbiol. 2023. https://doi.org/10.3389/fcimb.2023.1225341.
Article PubMed PubMed Central Google Scholar
Liu J, Wang W, Wang C, et al. Discovery of antibacterial contezolid acefosamil: innovative O-acyl phosphoramidate prodrug for IV and oral therapies. ACS Med Chem Lett. 2022;13:1030–5. https://doi.org/10.1021/acsmedchemlett.2c00191.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Voss KM, Liu J, Gordeev MF. Nonclinical evaluation of antibacterial oxazolidinones contezolid and contezolid acefosamil with low serotonergic neurotoxicity. Chem Res Toxicol. 2021;34:1348–54. https://doi.org/10.1021/acs.chemrestox.0c00524.
Article CAS PubMed Google Scholar
Wang XK, Yu J, Xie CY, et al. In vivo pharmacodynamic study of contezolid acefosamil, a prodrug of contezolid for oral and intravenous administration. J Antimicrob Chemother. 2023. https://doi.org/10.1093/jac/dkad138.
Article PubMed PubMed Central Google Scholar
Zhao X, Huang H, Yuan H, Yuan Z, Zhang Y. A Phase III multicentre, randomized, double-blind trial to evaluate the efficacy and safety of oral contezolid versus linezolid in adults with complicated skin and soft tissue infections. J Antimicrob Chemother. 2022;77:1762–9. https://doi.org/10.1093/jac/dkac073.
Article CAS PubMed Google Scholar
Yang H, Jin Y, Wang H, et al. A phase I study of the safety, tolerability, and pharmacokinetics of contezolid acefosamil after intravenous and oral administration in healthy Chinese subjects. Antimicrob Agent Chemother. 2023. https://doi.org/10.1128/aac.00796-23.
MicuRx. Contezolid acefosamil versus linezolid for the treatment of acute bacterial skin and skin structure infection. NCT03747497. https://clinicaltrials.gov/study/NCT03747497?intr=contezolid&viewType=Table&rank=2.
MicuRx. Safety and efficacy study of contezolid acefosamil and contezolid compared to linezolid administered intravenously and orally to adults with moderate or severe diabetic foot infections (DFI). NCT05369052. https://clinicaltrials.gov/study/NCT05369052?intr=contezolid&viewType=Table&rank=1.
Beijing Chest Hospital. Innovating shorter, all- oral, precised, individualized treatment regimen for rifampicin resistant tuberculosis: contezolid, delamanid and bedaquiline cohort (INSPIRE-CODA). NCT06081361. https://clinicaltrials.gov/study/NCT06081361?intr=contezolid&viewType=Table&rank=3.
Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in methicillin-resistant staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54:621–9. https://doi.org/10.1093/cid/cir895.
Article CAS PubMed Google Scholar
Wang J, Nie W, Ma L, et al. Clinical utility of contezolid-containing regimens in 25 cases of linezolid-intolerable tuberculosis patients. Infect Drug Resist. 2023;16:6237–45. https://doi.org/10.2147/idr.S425743.
Article PubMed PubMed Central Google Scholar
Eckburg PB, Ge Y, Hafkin B. Single- and multiple-dose study to determine the safety, tolerability, pharmacokinetics, and food effect of oral MRX-I versus linezolid in healthy adult subjects. Antimicrob Agent Chemother. 2017. https://doi.org/10.1128/aac.02181-16.
Wu X, Li Y, Zhang J, et al. Short-term safety, tolerability, and pharmacokinetics of MRX-I, an oxazolidinone antibacterial agent. Health Chin Subj Clin Ther. 2018;40:322-332.e5. https://doi.org/10.1016/j.clinthera.2017.12.017.
Wu J, Wu H, Wang Y, et al. Tolerability and pharmacokinetics of contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis. Clin Ther. 2019;41:1164-1174.e4. https://doi.org/10.1016/j.clinthera.2019.04.025.
Article CAS PubMed Google Scholar
Li L, Wu H, Chen Y, et al. Population pharmacokinetics study of contezolid (MRX-I), a novel oxazolidinone antibacterial agent. Chin Patient Clin Ther. 2020;42:818–29. https://doi.org/10.1016/j.clinthera.2020.03.020.
Instructions for contezolid tablets (优喜泰®). 1 June 2021.
Meng J, Zhong D, Li L, et al. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab Dispos. 2015;43:646–59. https://doi.org/10.1124/dmd.114.061747.
Article CAS PubMed Google Scholar
Wu J, Yang X, Wu J, et al. Dose adjustment not required for contezolid in patients with moderate hepatic impairment based on pharmacokinetic/pharmacodynamic analysis. Front Pharmacol. 2023;14:1135007. https://doi.org/10.3389/fphar.2023.1135007.
Article CAS PubMed PubMed Central Google Scholar
Wu J, Cao G, Wu H, et al. Evaluation of the effect of contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo- and positive-controlled crossover study in healthy Chinese volunteers. Antimicrob Agent Chemother. 2020. https://doi.org/10.1128/aac.02158-19.
Hoy SM. Contezolid: first approval. Drugs. 2021;81:1587–91. https://doi.org/10.1007/s40265-021-01576-0.
Article CAS PubMed PubMed Central Google Scholar
Kang Y, Ge C, Zhang H, et al. Compassionate use of contezolid for the treatment of tuberculous pleurisy in a patient with a leadless pacemaker. Infect Drug Resist. 2022;15:4467–70. https://doi.org/10.2147/IDR.S373082.
Comments (0)