Assessment of Fluid Responsiveness with Critical Care Echocardiography: An Update

Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.

Article  PubMed  Google Scholar 

Hayashi Y, Shimazui T, Tomita K, Shimada T, Miura RE, Nakada TA. Associations between fluid overload and outcomes in critically ill patients with acute kidney injury: a retrospective observational study. Sci Rep. 2023;13(1):17410.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Malbrain M, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66.

Article  PubMed Central  PubMed  Google Scholar 

Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med. 2008;36(10):2810–6.

Article  PubMed  Google Scholar 

Desai N, Garry D. Assessing dynamic fluid-responsiveness using transthoracic echocardiography in intensive care. BJA Educ. 2018;18(7):218–26.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691–9.

Article  PubMed  Google Scholar 

Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64–8.

Article  PubMed  Google Scholar 

Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42(3):324–32.

Article  CAS  PubMed  Google Scholar 

De Backer D, Vincent JL. Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care. 2018;22(1):43.

Article  PubMed Central  PubMed  Google Scholar 

Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713; quiz 86–8.

Article  PubMed  Google Scholar 

Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30(6):1527–33.

Article  CAS  PubMed  Google Scholar 

Fiza B, Duggal N, McMillan CE, Mentz G, Maile MD. Feasibility of anesthesiologist-performed preoperative echocardiography for the prediction of postinduction hypotension: A prospective observational study. Anesthesiol Res Pract. 2020;2020:1375741.

PubMed Central  PubMed  Google Scholar 

Blanco P, Aguiar FM, Blaivas M. Rapid ultrasound in shock (RUSH) velocity-time integral: a proposal to expand the RUSH protocol. J Ultrasound Med. 2015;34(9):1691–700.

Article  PubMed  Google Scholar 

Blanco P. Left ventricular outflow tract velocity-time integral: a proper measurement technique is mandatory. Vasc Med. 2020;25(3):283–4.

Article  PubMed  Google Scholar 

Mercado P, Maizel J, Beyls C, Titeca-Beauport D, Joris M, Kontar L, et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care. 2017;21(1):136.

Article  PubMed Central  PubMed  Google Scholar 

Jentzer JC, Tabi M, Wiley BM, Lanspa MJ, Anavekar NS, Oh JK. Doppler-derived haemodynamics performed during admission echocardiography predict in-hospital mortality in cardiac intensive care unit patients. Eur Heart J Acute Cardiovasc Care. 2022;11(8):640–50.

Article  PubMed  Google Scholar 

Yuriditsky E, Mitchell OJ, Sibley RA, Xia Y, Sista AK, Zhong J, et al. Low left ventricular outflow tract velocity time integral is associated with poor outcomes in acute pulmonary embolism. Vasc Med. 2020;25(2):133–40.

Article  PubMed  Google Scholar 

Tan C, Rubenson D, Srivastava A, Mohan R, Smith MR, Billick K, et al. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort. Cardiovasc Ultrasound. 2017;15(1):18.

Article  PubMed Central  PubMed  Google Scholar 

Dinh VA, Ko HS, Rao R, Bansal RC, Smith DD, Kim TE, et al. Measuring cardiac index with a focused cardiac ultrasound examination in the ED. Am J Emerg Med. 2012;30(9):1845–51.

Article  PubMed  Google Scholar 

Edelman SK. Understanding Ultrasound Physics: ESP Ultrasound. 2012.

Ring L, Shah BN, Bhattacharyya S, Harkness A, Belham M, Oxborough D, et al. Echocardiographic assessment of aortic stenosis: a practical guideline from the British Society of Echocardiography. Echo Res Pract. 2021;8(1):G19–g59.

Article  PubMed Central  PubMed  Google Scholar 

Blanco P. Rationale for using the velocity-time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J. 2020;12(1):21.

Article  PubMed Central  PubMed  Google Scholar 

Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Dépret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019;23(1):116.

Article  PubMed Central  PubMed  Google Scholar 

Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein S, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30(4):372–92.

Article  PubMed  Google Scholar 

Orde S, Slama M, Hilton A, Yastrebov K, McLean A. Pearls and pitfalls in comprehensive critical care echocardiography. Crit Care. 2017;21(1):279.

Article  PubMed Central  PubMed  Google Scholar 

Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002;15(2):167–84.

Article  PubMed  Google Scholar 

Miller A, Mandeville J. Predicting and measuring fluid responsiveness with echocardiography. Echo Res Pract. 2016;3(2):G1–g12.

Article  PubMed Central  PubMed  Google Scholar 

Kashani K, Omer T, Shaw AD. The intensivist’s perspective of shock, volume management, and hemodynamic monitoring. Clin J Am Soc Nephrol. 2022;17(5):706–16.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bednarczyk JM, Fridfinnson JA, Kumar A, Blanchard L, Rabbani R, Bell D, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: A systematic review and meta-analysis. Crit Care Med. 2017;45(9):1538–45.

Article  PubMed Central  PubMed  Google Scholar 

Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.

Article  PubMed Central  PubMed  Google Scholar 

Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.

Article  PubMed  Google Scholar 

Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What’s new? Ann Intensive Care. 2022;12(1):46.

Article  PubMed Central  PubMed  Google Scholar 

Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935–47.

Article  PubMed  Google Scholar 

Cherpanath TG, Hirsch A, Geerts BF, Lagrand WK, Leeflang MM, Schultz MJ, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44(5):981–91.

Article  PubMed  Google Scholar 

Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316(12):1298–309.

Article  PubMed  Google Scholar 

Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158(4):1431–45.

Article  PubMed Central  PubMed  Google Scholar 

Préau S, Saulnier F, Dewavrin F, Durocher A, Chagnon JL. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38(3):819–25.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif