Adamante G, de Almeida AS, Rigo FK et al (2019) Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice. Life Sci 216:215–226. https://doi.org/10.1016/j.lfs.2018.11.029
Article CAS PubMed Google Scholar
Arnold LM, Gebke KB, Choy EHS (2016) Fibromyalgia: Management strategies for primary care providers. Int J Clin Pract 70:99–112. https://doi.org/10.1111/IJCP.12757
Article CAS PubMed Google Scholar
Atwal N, Casey SL, Mitchell VA, Vaughan CW (2019) THC and gabapentin interactions in a mouse neuropathic pain model. Neuropharmacology 144:115–121. https://doi.org/10.1016/j.neuropharm.2018.10.006
Article CAS PubMed Google Scholar
Brederson J-D, Jarvis FM, Honore PS, Surowy C (2011) Fibromyalgia: mechanisms, current treatment and animal models. Curr Pharm Biotechnol 12:1613–1626. https://doi.org/10.2174/138920111798357258
Article CAS PubMed Google Scholar
Brum ES, Fialho MFP, Fischer SPM et al (2020) Relevance of Mitochondrial Dysfunction in the Reserpine-Induced Experimental Fibromyalgia Model. Mol Neurobiol 57(4202):4217. https://doi.org/10.1007/s12035-020-01996-1
Brum ES, Becker G, Fialho MFP, Oliveira SM (2022) Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 230:107959. https://doi.org/10.1016/j.pharmthera.2021.107959
Article CAS PubMed Google Scholar
Brusco I, Justino AB, Silva CR et al (2019) Kinins and their B1 and B2 receptors are involved in fibromyalgia-like pain symptoms in mice. Biochem Pharmacol 168:119–132. https://doi.org/10.1016/j.bcp.2019.06.023
Article CAS PubMed Google Scholar
Brusco I, Justino AB, Silva CR et al (2021) Inhibitors of angiotensin I converting enzyme potentiate fibromyalgia-like pain symptoms via kinin receptors in mice. Eur J Pharmacol 895:173870. https://doi.org/10.1016/j.ejphar.2021.173870
Article CAS PubMed Google Scholar
Camponogara C, Brum ES, Pegoraro NS et al (2021) Diosmetin, a novel transient receptor potential vanilloid 1 antagonist, alleviates the UVB radiation-induced skin inflammation in mice. Inflammopharmacology 29:879–895. https://doi.org/10.1007/s10787-021-00802-1
Article CAS PubMed Google Scholar
Carballo-Villalobos AI, González-Trujano ME, Pellicer F et al (2018) Central and peripheral anti-hyperalgesic effects of diosmin in a neuropathic pain model in rats. Biomed Pharmacother 97:310–320. https://doi.org/10.1016/j.biopha.2017.10.077
Article CAS PubMed Google Scholar
Carradori S, Gidaro MC, Petzer A et al (2016) Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J Agric Food Chem 64:9004–9011. https://doi.org/10.1021/acs.jafc.6b03529
Article CAS PubMed Google Scholar
Chaplan SR, Bach FW, Pogrel JW et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. https://doi.org/10.1016/0165-0270(94)90144-9
Article CAS PubMed Google Scholar
Choy EHS (2015) The role of sleep in pain and fibromyalgia. Nat Rev Rheumatol 11:513–520
Choy E, Perrot S, Leon T et al (2010) A patient survey of the impact of fibromyalgia and the journey to diagnosis. BMC Health Serv Res 10:102. https://doi.org/10.1186/1472-6963-10-102
Article PubMed PubMed Central Google Scholar
Clauw DJ (2014) Fibromyalgia. JAMA 311:1547. https://doi.org/10.1001/jama.2014.3266
Article CAS PubMed Google Scholar
Clauw DJ (2015) Fibromyalgia and related conditions. Mayo Clin Proc 90:680–692. https://doi.org/10.1016/j.mayocp.2015.03.014
De la Luz-Cuellar YE, Rodríguez-Palma EJ, Franco-Enzástiga Ú et al (2019) Blockade of spinal receptors differentially reduces reserpine-induced fibromyalgia-type pain in female rats. Eur J Pharmacol 858:1724443
de Oliveira DR, Todo AH, Rêgo GM et al (2018) Flavones-bound in benzodiazepine site on GABA A receptor: Concomitant anxiolytic-like and cognitive-enhancing effects produced by Isovitexin and 6-C-glycoside-Diosmetin. Eur J Pharmacol 831:77–86. https://doi.org/10.1016/j.ejphar.2018.05.004
Derry S, Cording M, Wiffen PJ et al (2016) Pregabalin for pain in fibromyalgia in adults. Cochrane Database Syst Rev 2019:291–292. https://doi.org/10.1002/14651858.CD011790.pub2
Dewanjee S, Hossain S, Ansari F (2023) Heliyon Review article A comprehensive review on clinically proven natural products in the management of nerve pain, with mechanistic insights. Heliyon 9:e15346. https://doi.org/10.1016/j.heliyon.2023.e15346
Article CAS PubMed PubMed Central Google Scholar
Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301
Article CAS PubMed Google Scholar
Doppler K, Rittner HL, Deckart M, Sommer C (2015) Reduced dermal nerve fiber diameter in skin biopsies of patients with fibromyalgia. Pain 156:2319–2325. https://doi.org/10.1097/j.pain.0000000000000285
Article CAS PubMed Google Scholar
Ferrarini EG, Paes RS, Baldasso GM et al (2022) Broad-spectrum cannabis oil ameliorates reserpine-induced fibromyalgia model in mice. Biomed Pharmacother 154:113552. https://doi.org/10.1016/j.biopha.2022.113552
Article CAS PubMed Google Scholar
Fialho MFP, Brum ES, Becker G et al (2023) Kinin B2 and B1 Receptors Activation Sensitize the TRPA1 Channel Contributing to Anastrozole-Induced Pain Symptoms. Pharmaceutics 15:1136. https://doi.org/10.3390/pharmaceutics15041136
Article CAS PubMed PubMed Central Google Scholar
Fischer SPM, Brusco I, Brum ES et al (2020) Involvement of TRPV1 and the efficacy of α-spinasterol on experimental fibromyalgia symptoms in mice. Neurochem Int 134:104673. https://doi.org/10.1016/j.neuint.2020.104673
Article CAS PubMed Google Scholar
Garcia Mendes MP, Carvalho dos Santos D, Rezende MJS et al (2021) Effects of intravenous administration of recombinant Phα1β toxin in a mouse model of fibromyalgia. Toxicon 195:104–110. https://doi.org/10.1016/j.toxicon.2021.03.012
Article CAS PubMed Google Scholar
Gavva NR, Treanor JJS, Garami A et al (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136:202–210. https://doi.org/10.1016/j.pain.2008.01.024
Article CAS PubMed Google Scholar
Gibson HE, Edwards JG, Page RS et al (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57:746–759. https://doi.org/10.1016/j.neuron.2007.12.027
Article CAS PubMed PubMed Central Google Scholar
Guo Y, Li D, Cen X et al (2022) Diosmetin protects against cardiac hypertrophy via p62/Keap1/Nrf2 signaling pathway. Oxid Med Cell Longev 2022:1–14. https://doi.org/10.1155/2022/8367997
Häuser W, Ablin J, Fitzcharles M-A et al (2015) Fibromyalgia. Nat Rev Dis Prim 1:15022. https://doi.org/10.1038/nrdp.2015.22
Hernandez-Leon A, De la Luz-Cuellar YE, Granados-Soto V et al (2018) Sex differences and estradiol involvement in hyperalgesia and allodynia in an experimental model of fibromyalgia. Horm Behav 97:39–46. https://doi.org/10.1016/j.yhbeh.2017.10.011
Article CAS PubMed Google Scholar
Huang W, Calvo M, Karu K et al (2013) A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy. Pain 154:560–575. https://doi.org/10.1016/j.pain.2012.12.023
Article CAS PubMed Google Scholar
Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384. https://doi.org/10.1146/annurev-cellbio-101011-155833
Article CAS PubMed Google Scholar
Kaur A, Singh L, Singh N et al (2019) Ameliorative effect of imperatorin in chemically induced fibromyalgia: role of NMDA/NFkB mediated downstream signaling. Biochem Pharmacol 166:56–69. https://doi.org/10.1016/j.bcp.2019.05.012
Article CAS PubMed Google Scholar
Klein CP, Sperotto NDM, Maciel IS et al (2014) Effects of D-series resolvins on behavioral and neurochemical changes in a fibromyalgia-like model in mice. Neuropharmacology 86:57–66. https://doi.org/10.1016/j.neuropharm.2014.05.043
Comments (0)