Desflurane alleviates LPS-induced acute lung injury by modulating let-7b-5p/HOXA9 axis

Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond). 2022;136(10):747–69. https://doi.org/10.1042/cs20210879.

Article  CAS  PubMed  Google Scholar 

Mowery NT, Terzian WTH, Nelson AC. Acute lung injury. Curr Probl Surg. 2020;57(5): 100777. https://doi.org/10.1016/j.cpsurg.2020.100777.

Article  PubMed  Google Scholar 

Chen X, Wang H, Jia K, Wang H, Ren T. Anti-Semaphorin-7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. Exp Ther Med. 2018;15(3):2356–64. https://doi.org/10.3892/etm.2018.5724.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gorman EA, O’Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet. 2022;400(10358):1157–70. https://doi.org/10.1016/S0140-6736(22)01439-8.

Article  PubMed  Google Scholar 

Goligher EC, Costa ELV, Yarnell CJ, Brochard LJ, Stewart TE, Tomlinson G, et al. Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med. 2021;203(11):1378–85. https://doi.org/10.1164/rccm.202009-3536OC.

Article  CAS  PubMed  Google Scholar 

Woo JH, Baik HJ, Kim CH, Chung RK, Kim DY, Lee GY, et al. Effect of propofol and desflurane on immune cell populations in breast cancer patients: a randomized trial. J Korean Med Sci. 2015;30(10):1503–8. https://doi.org/10.3346/jkms.2015.30.10.1503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin X, Ju YN, Gao W, Li DM, Guo CC. Desflurane attenuates ventilator-induced lung injury in rats with acute respiratory distress syndrome. Biomed Res Int. 2018;2018:7507314. https://doi.org/10.1155/2018/7507314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Liu N, Yang HT. Desflurane pretreatment can reduce sepsis-evoked lung injury in rats via inhibiting STAT3 pathway. J Biol Regul Homeost Agents. 2020;34(3):935–42. https://doi.org/10.23812/20-173-a-48.

Tosun M, Olmez H, Unver E, Arslan YK, Cimen FK, Ozcicek A et al. Oxidative and pro-inflammatory lung injury induced by desflurane inhalation in rats and the protective effect of rutin. Adv Clin Exp Med. 2021;30(9):941–8. https://doi.org/10.17219/acem/136194.

Tabnak P, Masrouri S, Geraylow KR, Zarei M, Esmailpoor ZH. Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed Pharmacother. 2021;144: 112309. https://doi.org/10.1016/j.biopha.2021.112309.

Article  CAS  PubMed  Google Scholar 

Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, et al. Sevoflurane and desflurane exposure enhanced cell proliferation and migration in ovarian cancer cells via miR-210 and miR-138 downregulation. Int J Mol Sci. 2021;22(4):1826. https://doi.org/10.3390/ijms22041826.

Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, et al. Inhalational anesthetics inhibit neuroglioma cell proliferation and migration via miR-138, -210 and -335. Int J Mol Sci. 2021;22(9):4355. https://doi.org/10.3390/ijms22094355.

Ren J, Wang X, Wei G, Meng Y. Exposure to desflurane anesthesia confers colorectal cancer cells metastatic capacity through deregulation of miR-34a/LOXL3. Eur J Cancer Prev. 2021;30(2):143–53. https://doi.org/10.1097/CEJ.0000000000000608.

Article  CAS  PubMed  Google Scholar 

Xiao K, He W, Guan W, Hou F, Yan P, Xu J, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-kappaB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020;11(10):863. https://doi.org/10.1038/s41419-020-03034-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen K, Wang X, Wang Y, Jia Y, Zhang Y, Wang K, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury. Redox Biol. 2023;62: 102655. https://doi.org/10.1016/j.redox.2023.102655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao P, Sun S, Cao J, Wang J, Li H, Hou S, et al. Expression profile of microRNAs in bronchoalveolar lavage fluid of rats as predictors for smoke inhalation injury. Burns. 2018;44(8):2042–50. https://doi.org/10.1016/j.burns.2018.07.009.

Article  PubMed  Google Scholar 

Wu CY, Ghule SS, Liaw CC, Achudhan D, Fang SY, Liu PI, et al. Ugonin P inhibits lung cancer motility by suppressing DPP-4 expression via promoting the synthesis of miR-130b-5p. Biomed Pharmacother. 2023;167: 115483. https://doi.org/10.1016/j.biopha.2023.115483.

Article  CAS  PubMed  Google Scholar 

Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int. 2022;22(1):349. https://doi.org/10.1186/s12935-022-02767-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xin X, Yan L, Guangfa Z, Yan H, Keng L, Chunting W. Mesenchymal stem cells promoted lung wound repair through Hox A9 during endotoxemia-induced acute lung injury. Stem Cells Int. 2017;2017:3648020. https://doi.org/10.1155/2017/3648020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, Han S, Jin K, Yu T, Chen H, Zhou X, et al. SOCS2 suppresses inflammation and apoptosis during NASH progression through limiting NF-κB activation in macrophages. Int J Biol Sci. 2021;17(15):4165–75. https://doi.org/10.7150/ijbs.63889.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi L, Hu H, Sun P, Li Z, Ji L, Liu S, et al. RPL38 knockdown inhibits the inflammation and apoptosis in chondrocytes through regulating METTL3-mediated SOCS2 m6A modification in osteoarthritis. Inflamm Res. 2022;71(7–8):977–89. https://doi.org/10.1007/s00011-022-01579-x.

Article  CAS  PubMed  Google Scholar 

Lear TB, McKelvey AC, Evankovich JW, Rajbhandari S, Coon TA, Dunn SR, et al. KIAA0317 regulates pulmonary inflammation through SOCS2 degradation. JCI Insight. 2019;4(19):e129110. https://doi.org/10.1172/jci.insight.129110.

Zhou X, Lu R. HOXA9/MEIS1 targets in leukemia: reinforced signaling networks and therapeutic opportunities. Haematologica. 2023;108(5):1205–7. https://doi.org/10.3324/haematol.2022.281779.

Article  PubMed  Google Scholar 

Adi O, Apoo FN, Fong CP, Ahmad AH, Roslan NL, Khan FA et al. Inhaled volatile anesthetic gas for severe bronchospasm in the emergency department. Am J Emerg Med. 2023;68:213.e5-.e9. https://doi.org/10.1016/j.ajem.2023.04.032.

Li P, Gu L, Bian Q, Jiao D, Xu Z, Wang L. Long non-coding RNA MALAT1 enhances the protective effect of dexmedetomidine on acute lung injury by sponging miR-135a-5p to downregulate the ratio of X-box binding proteins XBP-1S/XBP-1U. Bioengineered. 2021;12(1):6377–89. https://doi.org/10.1080/21655979.2021.1967579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Zhang Y. Desflurane accelerates neuronal cytotoxicity of Aβ by downregulating miR-214. Neurosci Lett. 2013;554:28–33. https://doi.org/10.1016/j.neulet.2013.08.063.

Article  CAS  PubMed  Google Scholar 

Chen S, Ding R, Hu Z, Yin X, Xiao F, Zhang W, et al. MicroRNA-34a inhibition alleviates lung injury in cecal ligation and puncture induced septic mice. Front Immunol. 2020;11:1829. https://doi.org/10.3389/fimmu.2020.01829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He K, Han S, An L, Zhang J. Inhibition of microRNA-214 alleviates lung injury and inflammation via increasing FGFR1 expression in ventilator-induced lung injury. Lung. 2021;199(1):63–72. https://doi.org/10.1007/s00408-020-00415-5.

Article  CAS  PubMed  Google Scholar 

Li Z, Yu Y, Liu C, Chen G, Gong W, Luo J, et al. Identification of the key ferroptosis-related genes involved in sepsis progression and experimental validation in vivo. Front Pharmacol. 2022;13: 940261. https://doi.org/10.3389/fphar.2022.940261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu F, Yang Y, Peng W, Zhao N, Chen J, Xu Z, et al. Mitophagy-promoting miR-138-5p promoter demethylation inhibits pyroptosis in sepsis-associated acute lung injury. Inflamm Res. 2023;72(2):329–46. https://doi.org/10.1007/s00011-022-01675-y.

Article  CAS  PubMed  Google Scholar 

Zang BB, Li H, Yang Y, Xie H, Xu XT. [The role of miR-135b-5p in inhibiting mice acute lung injury (ALI) induced by sepsis and its mechanism]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2022;38(4):366–72. https://doi.org/10.12047/j.cjap.6263.2022.069.

Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and indirect targeting of HOXA9 transcription factor in acute myeloid leukemia. Cancers (Basel). 2019;11(6):837. https://doi.org/10.3390/cancers11060837.

Zhao R, Wang L, Wang T, Xian P, Wang H, Long Q. Inhalation of MSC-EVs is a noninvasive strategy for ameliorating acute lung injury. J Control Release. 2022;345:214–30. https://doi.org/10.1016/j.jconrel.2022.03.025.

Article  CAS  PubMed  Google Scholar 

Zhuang C, Kang M, Lee M. Delivery systems of therapeutic nucleic acids for the treatment of acute lung injury/acute respiratory distress syndrome. J Control Release. 2023;360:1–14. https://doi.org/10.1016/j.jconrel.2023.06.018.

Article  CAS  PubMed  Google Scholar 

Fuller BM, Mohr NM, Skrupky L, Fowler S, Kollef MH, Carpenter CR. The use of inhaled prostaglandins in patients with ARDS: a systematic review and meta-analysis. Chest. 2015;147(6):1510–22. https://doi.org/10.1378/chest.14-3161.

Article  PubMed  PubMed Central  Google Scholar 

Redaelli S, Pozzi M, Giani M, Magliocca A, Fumagalli R, Foti G, et al. Inhaled nitric oxide in acute respiratory distress syndrome subsets: rationale and clinical applications. J Aerosol Med Pulm Drug Deliv. 2023;36(3):112–26. https://doi.org/10.1089/jamp.2022.0058.

Article  CAS  PubMed  Google Scholar 

An L, Zhong Y, Tan J, Liu Y, Li A, Yang T, et al. Sevoflurane exerts protection against myocardial ischemia-reperfusion injury and pyroptosis through the circular RNA PAN3/microRNA-29b-3p/stromal cell-derived factor 4 axis. Int Immunopharmacol. 2023;120: 110219. https://doi.org/10.1016/j.intimp.2023.110219.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif