Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity

Arthur HM, Roman BL (2022) An update on preclinical models of hereditary haemorrhagic telangiectasia: insights into disease mechanisms. Front Med (Lausanne) 9:973964. https://doi.org/10.3389/fmed.2022.973964

Article  PubMed  Google Scholar 

McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak-Vance MA, Heutnik P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA (1994) Endoglin, a TGF-b binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8(4):345–351

Article  CAS  PubMed  Google Scholar 

Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195. https://doi.org/10.1038/ng0696-189

Article  CAS  PubMed  Google Scholar 

McDonald J, Bayrak-Toydemir P, DeMille D, Wooderchak-Donahue W, Whitehead K (2020) Curacao diagnostic criteria for hereditary hemorrhagic telangiectasia is highly predictive of a pathogenic variant in ENG or ACVRL1 (HHT1 and HHT2). Genet Med 22(7):1201–1205. https://doi.org/10.1038/s41436-020-0775-8

Article  CAS  PubMed  Google Scholar 

Maestraggi Q, Bouattour M, Toquet S, Jaussaud R, Kianmanesh R, Durand F, Servettaz A (2015) Bevacizumab to treat cholangiopathy in hereditary hemorrhagic telangiectasia: be cautious: a case report. Medicine (Baltimore) 94(46):e1966. https://doi.org/10.1097/MD.0000000000001966

Article  CAS  PubMed  Google Scholar 

Penaloza A, Vekemans MC, Lambert C, Hermans C (2011) Deep vein thrombosis induced by thalidomide to control epistaxis secondary to hereditary haemorrhagic telangiectasia. Blood Coagul Fibrinolysis 22(7):616–618. https://doi.org/10.1097/MBC.0b013e32834a040c

Article  PubMed  Google Scholar 

Gallione CJ, Klaus DJ, Yeh EY, Stenzel TT, Xue Y, Anthony KB, McAllister KA, Baldwin MA, Berg JN, Lux A, Smith JD, Vary CP, Craigen WJ, Westermann CJ, Warner ML, Miller YE, Jackson CE, Guttmacher AE, Marchuk DA (1998) Mutation and expression analysis of the endoglin gene in hereditary hemorrhagic telangiectasia reveals null alleles. Hum Mutat 11(4):286–294. https://doi.org/10.1002/(SICI)1098-1004(1998)11:4%3c286::AID-HUMU6%3e3.0.CO;2-B

Article  CAS  PubMed  Google Scholar 

Lux A, Gallione CJ, Marchuk DA (2000) Expression analysis of endoglin missense and truncation mutations: insights into protein structure and disease mechanisms. Hum Mol Genet 9(5):745–755

Article  CAS  PubMed  Google Scholar 

Ricard N, Bidart M, Mallet C, Lesca G, Giraud S, Prudent R, Feige JJ, Bailly S (2010) Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood 116(9):1604–1612. https://doi.org/10.1182/blood-2010-03-276881

Article  CAS  PubMed  Google Scholar 

Mallet C, Lamribet K, Giraud S, Dupuis-Girod S, Feige JJ, Bailly S, Tillet E (2015) Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet 24(4):1142–1154. https://doi.org/10.1093/hmg/ddu531

Article  CAS  PubMed  Google Scholar 

Pece-Barbara N, Cymerman U, Vera S, Marchuk DA, Letarte M (1999) Expression analysis of four endoglin missense mutations suggests that haploinsufficiency is the predominant mechanism for hereditary hemorrhagic telangiectasia type 1. Hum Mol Genet 8(12):2171–2181

Article  CAS  PubMed  Google Scholar 

Galaris G, Montagne K, Thalgott JH, Goujon G, van den Driesche S, Martin S, Mager HJ, Mummery CL, Rabelink TJ, Lebrin F (2021) Thresholds of endoglin expression in endothelial cells explains vascular etiology in hereditary hemorrhagic telangiectasia type 1. Int J Mol Sci. https://doi.org/10.3390/ijms22168948

Article  PubMed  PubMed Central  Google Scholar 

Snellings DA, Gallione CJ, Clark DS, Vozoris NT, Faughnan ME, Marchuk DA (2019) Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in bi-allelic loss of ENG or ACVRL1. Am J Hum Genet 105(5):894–906. https://doi.org/10.1016/j.ajhg.2019.09.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwan Kim Y, Vu PN, Choe SW, Jeon CJ, Arthur HM, Vary CPH, Lee YJ, Oh SP (2020) Overexpression of activin receptor-like kinase 1 in endothelial cells suppresses development of arteriovenous malformations in mouse models of hereditary hemorrhagic telangiectasia. Circ Res 127(9):1122–1137. https://doi.org/10.1161/CIRCRESAHA.119.316267

Article  CAS  PubMed  Google Scholar 

Garrido-Martin EM, Blanco FJ, Fernandez LA, Langa C, Vary CP, Lee UE, Friedman SL, Botella LM, Bernabeu C (2010) Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1. BMC Mol Biol 11:51. https://doi.org/10.1186/1471-2199-11-51

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrido-Martin EM, Blanco FJ, Roque M, Novensa L, Tarocchi M, Lang UE, Suzuki T, Friedman SL, Botella LM, Bernabeu C (2013) Vascular injury triggers Kruppel-like factor 6 mobilization and cooperation with specificity protein 1 to promote endothelial activation through upregulation of the activin receptor-like kinase 1 gene. Circ Res 112(1):113–127. https://doi.org/10.1161/CIRCRESAHA.112.275586

Article  CAS  PubMed  Google Scholar 

Chen HW, Yang CC, Hsieh CL, Liu H, Lee SC (1829) Tan BC (2013) A functional genomic approach reveals the transcriptional role of EDD in the expression and function of angiogenesis regulator ACVRL1. Biochim Biophys Acta 12:1309–1319. https://doi.org/10.1016/j.bbagrm.2013.10.006

Article  CAS  Google Scholar 

Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, Pradhan A, Kalin TV, Kalinichenko VV (2022) Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun 13(1):2080. https://doi.org/10.1038/s41467-022-29746-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Lin L, Qi H, Chen J, Grossfeld P (2022) Endothelial loss of ETS1 impairs coronary vascular development and leads to ventricular non-compaction. Circ Res 131(5):371–387. https://doi.org/10.1161/CIRCRESAHA.121.319955

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Yonenaga Y, Seki T (2009) Shortened ALK1 regulatory fragment maintains a specific activity in arteries feeding ischemic tissues. Gene Ther 16(8):1034–1041. https://doi.org/10.1038/gt.2009.53

Article  CAS  PubMed  Google Scholar 

Seki T, Hong KH, Yun J, Kim SJ, Oh SP (2004) Isolation of a regulatory region of activin receptor-like kinase 1 gene sufficient for arterial endothelium-specific expression. Circ Res 94(8):e72-77. https://doi.org/10.1161/01.RES.0000127048.81744.31

Article  CAS  PubMed  Google Scholar 

Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, Roman BL (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138(8):1573–1582. https://doi.org/10.1242/dev.060467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westerfield M (1995) The zebrafish book, 3rd edn. University of Oregon Press, Eugene

Google Scholar 

Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019

Article  CAS  PubMed  Google Scholar 

Capasso TL, Li B, Volek HJ, Khalid W, Rochon ER, Anbalagan A, Herdman C, Yost HJ, Villanueva FS, Kim K, Roman BL (2020) BMP10-mediated ALK1 signaling is continuously required for vascular development and maintenance. Angiogenesis 23(2):203–220. https://doi.org/10.1007/s10456-019-09701-0

Article  PubMed  Google Scholar 

Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133–144. https://doi.org/10.1016/j.devcel.2004.06.005

Article  CAS  PubMed  Google Scholar 

Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174(2):639–649. https://doi.org/10.1534/genetics.106.060244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245. https://doi.org/10.1093/nar/gky354

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. https://doi.org/10.1038/nbt.2501

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochon ER, Wright DS, Schubert MM, Roman BL (2015) Context-specific interactions between Notch and ALK1 cannot explain ALK1-associated arteriovenous malformations. Cardiovasc Res 107(1):143–152. https://doi.org/10.1093/cvr/cvv148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31(1):106–110. https://doi.org/10.1038/ng875

留言 (0)

沒有登入
gif