Pan Q, Guo K, Xue M, Tu Q (2020) Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem Int 135:104685. https://doi.org/10.1016/j.neuint.2020.104685
Article CAS PubMed Google Scholar
Finney CA, Shvetcov A, Westbrook RF et al (2020) The role of hippocampal estradiol in synaptic plasticity and memory: a systematic review. Front Neuroendocrinol 56:100818. https://doi.org/10.1016/j.yfrne.2019.100818
Article CAS PubMed Google Scholar
Pompili A, Iorio C, Gasbarri A (2020) Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 80:117–128. https://doi.org/10.21307/ane-2020-012
Ortiz-Pérez A, Espinosa-Raya J, Picazo O (2016) An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 17:15–25. https://doi.org/10.1007/s10339-015-0746-1
Koebele SV, Mennenga SE, Poisson ML et al (2020) Characterizing the effects of tonic 17β-estradiol administration on spatial learning and memory in the follicle-deplete middle-aged female rat. Horm Behav 126:104854. https://doi.org/10.1016/j.yhbeh.2020.104854
Article CAS PubMed PubMed Central Google Scholar
Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ et al (2022) Highlights regarding prolactin in the dentate gyrus and hippocampus. pp 479–505
Taxier LR, Gross KS, Frick KM (2020) Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 21:535–550. https://doi.org/10.1038/s41583-020-0362-7
Article CAS PubMed PubMed Central Google Scholar
Yao S, Song J, Gao J et al (2018) Cognitive function and serum hormone levels are associated with gray matter volume decline in female patients with prolactinomas. Front Neurol 8. https://doi.org/10.3389/fneur.2017.00742
Moreno-Ruiz B, Mellado S, Zamora-Moratalla A et al (2021) Increase in serum prolactin levels in females improves the performance of spatial learning by promoting changes in the circuital dynamics of the hippocampus. Psychoneuroendocrinology 124. https://doi.org/10.1016/j.psyneuen.2020.105048
Leem YH, Park JS, Chang H et al (2019) Exercise prevents memory consolidation defects Via enhancing prolactin responsiveness of CA1 neurons in mice under chronic stress. Mol Neurobiol 56. https://doi.org/10.1007/s12035-019-1560-z
Torner L, Tinajero E, Lajud N et al (2013) Hyperprolactinemia impairs object recognition without altering spatial learning in male rats. Behav Brain Res 252:32–39. https://doi.org/10.1016/j.bbr.2013.05.031
Article CAS PubMed Google Scholar
Walker TL, Vukovic J, Koudijs MM et al (2012) Prolactin stimulates Precursor cells in the adult mouse Hippocampus. PLoS ONE 7:e44371. https://doi.org/10.1371/journal.pone.0044371
Article CAS PubMed PubMed Central Google Scholar
Reyes-Mendoza J, Morales T (2020) Prolactin treatment reduces kainic acid-induced gliosis in the hippocampus of ovariectomized female rats. Brain Res 1746:147014. https://doi.org/10.1016/j.brainres.2020.147014
Article CAS PubMed Google Scholar
Castanho TC, Moreira PS, Portugal-Nunes C et al (2014) The role of sex and sex-related hormones in cognition, mood and well-being in older men and women. Biol Psychol 103:158–166. https://doi.org/10.1016/j.biopsycho.2014.08.015
Montalvo I, Llorens M, Caparrós L et al (2018) Improvement in cognitive abilities following cabergoline treatment in patients with a prolactin-secreting pituitary adenoma. Int Clin Psychopharmacol 33:98–102. https://doi.org/10.1097/YIC.0000000000000199
Sihra TS, Flores G, Rodríguez-Moreno A (2014) Kainate receptors. Neuroscientist 20:29–43. https://doi.org/10.1177/1073858413478196
Article CAS PubMed Google Scholar
Tejadilla D, Cerbón M, Morales T (2010) Prolactin reduces the damaging effects of excitotoxicity in the dorsal hippocampus of the female rat independently of ovarian hormones. Neuroscience 169:1178–1185. https://doi.org/10.1016/j.neuroscience.2010.05.074
Article CAS PubMed Google Scholar
Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54:99–105. https://doi.org/10.1016/j.vascn.2006.04.001
Article CAS PubMed Google Scholar
Taglialatela G, Hogan D, Zhang W-R, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99. https://doi.org/10.1016/j.bbr.2008.12.034
Article CAS PubMed PubMed Central Google Scholar
Lueptow LM (2017) Novel object Recognition Test for the investigation of learning and memory in mice. J Visualized Experiments. https://doi.org/10.3791/55718
George Paxinos and Charles Watson (1986) The Rat Brain In Stereotaxic Coordinates, Second Edition. Academic Press
Hasegawa Y, Hojo Y, Kojima H et al (2015) Estradiol rapidly modulates synaptic plasticity of hippocampal neurons: involvement of kinase networks. Brain Res 1621:147–161. https://doi.org/10.1016/j.brainres.2014.12.056
Article CAS PubMed Google Scholar
Rong W, Wang J, Liu X et al (2012) 17β-Estradiol attenuates neural cell apoptosis through inhibition of JNK Phosphorylation in SCI Rats and Excitotoxicity Induced by Glutamate in Vitro. Int J Neurosci 122:381–387. https://doi.org/10.3109/00207454.2012.668726
Article CAS PubMed Google Scholar
Rodriguez-Chavez V, Moran J, Molina-Salinas G et al (2021) Participation of glutamatergic ionotropic receptors in excitotoxicity: the neuroprotective role of Prolactin. Neuroscience 461:180–193. https://doi.org/10.1016/j.neuroscience.2021.02.027
Article CAS PubMed Google Scholar
Hojo Y, Munetomo A, Mukai H et al (2015) Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: involvement of kinase networks. Horm Behav 74:149–156. https://doi.org/10.1016/j.yhbeh.2015.06.008
Article CAS PubMed Google Scholar
Tuscher JJ, Fortress AM, Kim J, Frick KM (2015) Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res 285:140–157. https://doi.org/10.1016/j.bbr.2014.08.001
Article CAS PubMed Google Scholar
Cabrera-Reyes EA, Vanoye–Carlo A, Rodríguez-Dorantes M et al (2019) Transcriptomic analysis reveals new hippocampal gene networks induced by prolactin. Sci Rep 9:13765. https://doi.org/10.1038/s41598-019-50228-7
Article CAS PubMed PubMed Central Google Scholar
Zamora-Moratalla A, Martín ED (2021) Prolactin enhances hippocampal synaptic plasticity in female mice of reproductive age. Hippocampus 31:281–293. https://doi.org/10.1002/hipo.23288
Article CAS PubMed Google Scholar
Love G, Torrey N, McNamara I et al (2005) Maternal experience produces long-lasting behavioral modifications in the rat. Behav Neurosci 119:1084–1096. https://doi.org/10.1037/0735-7044.119.4.1084
Pawluski JL, Walker SK, Galea LAM (2006) Reproductive experience differentially affects spatial reference and working memory performance in the mother. Horm Behav 49:143–149. https://doi.org/10.1016/j.yhbeh.2005.05.016
Bridges RS (2016) Long-term alterations in neural and endocrine processes induced by motherhood in mammals. Horm Behav 77. https://doi.org/10.1016/j.yhbeh.2015.09.001
Hussain D, Hoehne A, Woodside B, Brake WG (2013) Reproductive experience modifies the effects of estradiol on learning and memory bias in female rats. Horm Behav 63. https://doi.org/10.1016/j.yhbeh.2012.11.011
Flores-Vivaldo YM, Camacho‐Abrego I, Picazo O, Flores G (2019) Pregnancies alters spine number in cortical and subcortical limbic brain regions of old rats. Synapse 73:e22100. https://doi.org/10.1002/syn.22100
Article CAS PubMed Google Scholar
Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F et al (2017) Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 71:e21991. https://doi.org/10.1002/syn.21991
Article CAS PubMed Google Scholar
Duc Nguyen H, Pal Yu B, Hoang NHM et al (2022) Prolactin and its altered action in Alzheimer’s Disease and Parkinson’s Disease. Neuroendocrinology 112:427–445. https://doi.org/10.1159/000517798
Article CAS PubMed Google Scholar
Azcoitia I, Barreto GE, Garcia-Segura LM (2019) Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 55:100787. https://doi.org/10.1016/j.yfrne.2019.100787
Article CAS PubMed Google Scholar
Lu Y, Sareddy GR, Wang J et al (2020) Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain. J Neurosci 40:7355–7374. https://doi.org/10.1523/JNEUROSCI.0115-20.2020
Article CAS PubMed PubMed Central Google Scholar
Duarte-Guterman P, Yagi S, Chow C, Galea LAM (2015) Hippocampal learning, memory, and neurogenesis: effects of sex and estrogens across the lifespan in adults. Horm Behav 74:37–52. https://doi.org/10.1016/j.yhbeh.2015.05.024
Article CAS PubMed Google Scholar
Chen Y, Guo W, Xu L et al (2016) 17 β -Estradiol promotes Schwann Cell Proliferation and differentiation, accelerating early remyelination in a mouse peripheral nerve Injury Model. Biomed Res Int 2016:1–13. https://doi.org/10.1155/2016/7891202
Comments (0)