Association of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants and type 1 diabetes mellitus

SEARCH Study Group. SEARCH for diabetes in Youth: a multicenter study of the prevalence, incidence and classification of diabetes mellitus in youth. Control Clin Trials. 2004;25(5):458–71.

Article  Google Scholar 

Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14(10):619–33.

Article  CAS  PubMed  Google Scholar 

Castano L, Eisenbarth G. Type I diabetes mellitus: a chronic autoimmune disease. Annu Rev Immunol. 1986;8:647–79.

Article  Google Scholar 

Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.

Article  PubMed  Google Scholar 

Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hober D, Sauter P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Reviews Endocrinol. 2010;6(5):279.

Article  Google Scholar 

Eurodiab Ace Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet. 2000;355(9207):873–6.

Article  Google Scholar 

Patterson CC, et al. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–33.

Article  PubMed  Google Scholar 

Chong JW, et al. Marked increase in type 1 diabetes mellitus incidence in children aged 0–14 year in Victoria, Australia, from 1999 to 2002. Pediatr Diabetes. 2007;8(2):67–73.

Article  PubMed  Google Scholar 

Centers for Disease Control and Prevention. National Diabetes statistics report, 2017 Atlanta. GA: Centers for Disease Control and Prevention, US Dept of Health and Human Services; 2017.

Google Scholar 

The International Diabetes Federation, IDF, Members MENA. Retrieved from https://idf.org/our-network/regions-members/middle-east-and-north-africa/members/34-egypt.html.2019.

Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–26.

Article  CAS  PubMed  Google Scholar 

Mathis D, Vence L, Benoist C. beta-cell death during progression to diabetes. Nature. 2001;414(6865):792–8.

Article  CAS  PubMed  Google Scholar 

Buch T, et al. MHC class II expression through a hitherto unknown pathway supports T helper cell-dependent immune responses: implications for MHC class II deficiency. Blood. 2006;107(4):1434–44.

Article  CAS  PubMed  Google Scholar 

Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32(4):457–67.

Article  CAS  PubMed  Google Scholar 

Colli ML, et al. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19(1):135–46.

Article  CAS  PubMed  Google Scholar 

Eizirik DL, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8(3):e1002552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang CH, Flavell RA. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J Exp Med. 1995;181(2):765–7.

Article  CAS  PubMed  Google Scholar 

Chang CH, et al. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J Exp Med. 1994;180(4):1367–74.

Article  CAS  PubMed  Google Scholar 

Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975–1028.

Article  CAS  PubMed  Google Scholar 

Russell MA, et al. HLA Class II Antigen Processing and Presentation Pathway Components demonstrated by transcriptome and protein analyses of islet β-Cells from donors with type 1 diabetes. Diabetes. 2019;68(5):988–1001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrat N, et al. The locus control region of the MHC class II promoter acts as a repressor element, the activity of which is inhibited by CIITA. Mol Immunol. 2010;47(4):825–32.

Article  CAS  PubMed  Google Scholar 

Steidl C, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reith W, Mach B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol. 2001;19(1):331–73.

Article  CAS  PubMed  Google Scholar 

Swanberg M, et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet. 2005;37(5):486–94.

Article  CAS  PubMed  Google Scholar 

Trynka G, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011;43(12):1193–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gyllenberg A, et al. Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes. Genes Immun. 2012;13(8):632–40.

Article  CAS  PubMed  Google Scholar 

Eike MC, et al. CIITA gene variants are associated with rheumatoid arthritis in scandinavian populations. Genes Immun. 2012;13(5):431–6.

Article  CAS  PubMed  Google Scholar 

Skinningsrud B, et al. Polymorphisms in CLEC16A and CIITA at 16p13 are associated with primary adrenal insufficiency. J Clin Endocrinol Metabolism. 2008;93(9):3310–7.

Article  CAS  Google Scholar 

Vargas-Alarcón G, et al. The variant rs8048002 T > C in intron 3 of the MHC2TA gene is associated with risk of developing acute coronary syndrome. Cytokine. 2015;71(2):268–71.

Article  PubMed  Google Scholar 

Chen Y, et al. The diverse pancreatic tumor cell-intrinsic response to IFNγ is determined by epigenetic heterogeneity. Cancer Lett. 2023;562:216153.

Article  CAS  PubMed  Google Scholar 

Germain C, et al. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-γ contributes to modulate immune responses. J Biol Chem. 2011;286(44):37964–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosen DB, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol. 2005;175(12):7796–9.

Article  CAS  PubMed  Google Scholar 

Dong S et al. Annotating and prioritizing human non-coding variants with RegulomeDB v. 2. Nat Genet, 2023: p. 1–3.

Huang A, et al. Clinical characteristics of 683 children and adolescents, aged 0–18 years, newly diagnosed with type 1 diabetes mellitus in Henan Province: a single-center study. BMC Pediatr. 2023;23(1):39.

Article  PubMed  PubMed Central  Google Scholar 

Zucker I, et al. Obesity in late adolescence and incident type 1 diabetes in young adulthood. Diabetologia. 2022;65(9):1473–82.

Article  PubMed  Google Scholar 

Kargar M, Doosti A, Ghorbani-Dalini S. Detection of four clarithromycin resistance point mutations in Helicobacter pylori: comparison of real-time PCR and PCR-RFLP methods. Comp Clin Pathol. 2013;22:1007–13.

Article  CAS  Google Scholar 

Boyle AP, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62.

Article  PubMed  PubMed Central  Google Scholar 

Chiang JL, et al. Type 1 diabetes in children and adolescents: a position statement by the American Diabetes Association. Diabetes Care. 2018;41(9):2026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belhiba O, et al. Research of anti-GAD and anti-IA2 autoantibodies by ELISA test in a series of Moroccan pediatric patients with diabetes type 1. Afr Health Sci. 2020;20(3):1337–43.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif