Inflammation and immunological disarrays are associated with acute exercise in type 2 diabetes

Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Metabolic Syndrome and Obesity: Diabetes; 2021. pp. 3567–602.

Google Scholar 

Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Reviews Endocrinol. 2020;16(10):545–55.

Article  Google Scholar 

Syeda UA, Battillo D, Visaria A, Malin SK. The importance of exercise for glycemic control in type 2 diabetes. Am J Med Open. 2023;9:100031.

Article  Google Scholar 

Kirwan JP, Sacks J, Nieuwoudt S. The essential role of exercise in the management of type 2 diabetes. Cleve Clin J Med. 2017;84(7 Suppl 1):S15.

Article  PubMed  PubMed Central  Google Scholar 

Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Reviews Endocrinol. 2019;15(10):569–89.

Article  CAS  Google Scholar 

Yang D, Yang Y, Li Y, Han R. Physical exercise as therapy for type 2 diabetes mellitus: from mechanism to orientation. Annals Nutr Metabolism. 2019;74(4):313–21.

Article  CAS  Google Scholar 

Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, et al. Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119(25):3244–62.

Article  PubMed  Google Scholar 

Mendes R, Sousa N, Reis VM, Themudo-Barata JL. Prevention of exercise-related injuries and adverse events in patients with type 2 diabetes. Postgrad Med J. 2013;89(1058):715–21.

Article  PubMed  Google Scholar 

Mendes R, Sousa N, Reis V, Themudo Barata J. Programa De exercício na Diabetes tipo 2. Revista Portuguesa De Diabetes. 2011;6(2):62–70.

Google Scholar 

Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–67.

Article  PubMed  PubMed Central  Google Scholar 

Rezaei-Tavirani M, Rezaei-Tavirani S, Mansouri V, Rostami-Nejad M, Rezaei-Tavirani M. Protein-protein interaction network analysis for a biomarker panel related to human esophageal adenocarcinoma. Asian Pac J cancer Prevention: APJCP. 2017;18(12):3357.

Google Scholar 

Abbaszadeh H-A, Peyvandi AA, Sadeghi Y, Safaei A, Zamanian-Azodi M, Khoramgah MS, et al. Er: YAG laser and cyclosporin a effect on cell cycle regulation of human gingival fibroblast cells. J Lasers Med Sci. 2017;8(3):143.

Article  PubMed  PubMed Central  Google Scholar 

Amanat S, Ghahri S, Dianatinasab A, Fararouei M, Dianatinasab M. Exercise and type 2 diabetes. Phys Exerc Hum Health. 2020:91–105.

Bao X, Qiu J, Xuan Q, Ye X. Bioinformatics Analysis of Exercise-Related Biomarkers in Diabetes. Genetics Research. 2022;2022.

Goeman JJ, Bühlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics. 2007;23(8):980–7.

Article  CAS  PubMed  Google Scholar 

Santosh PS, Arora N, Sarma P, Pal-Bhadra M, Bhadra U. Interaction map and selection of microRNA targets in Parkinson’s disease-related genes. Biomed Res Int. 2009;2009.

Torkamani A, Topol EJ, Schork NJ. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics. 2008;92(5):265–72.

Article  CAS  PubMed  Google Scholar 

Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C, et al. Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genetic Epidemiology: Official Publication Int Genetic Epidemiol Soc. 2009;33(5):419–31.

Article  Google Scholar 

Rezaei-Tavirani M, Rezaei-Tavirani M, Azodi MZ. Investigating therapeutic effects of retinoic acid on thyroid cancer via protein-protein interaction network analysis. Int J Cancer Manage. 2019;12(10).

Gupta MK, Vadde R. Identification and characterization of differentially expressed genes in type 2 diabetes using in silico approach. Comput Biol Chem. 2019;79:24–35.

Article  CAS  PubMed  Google Scholar 

Yu X, Shen N, Zhang ML, Pan FY, Wang C, Jia WP, et al. Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J. 2011;30(18):3754–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu L, Ye X, Yao Q, Lu A, Zhao Z, Ding Y, et al. Egr2 enhances insulin resistance via JAK2/STAT3/SOCS-1 pathway in HepG2 cells treated with palmitate. Gen Comp Endocrinol. 2018;260:25–31.

Article  CAS  PubMed  Google Scholar 

Fève B, Bastard J-P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Reviews Endocrinol. 2009;5(6):305–11.

Article  Google Scholar 

Rezaei-Tavirani S, Rostami-Nejad M, Vafaee R, Khalkhal E, Keramatinia A, Ehsani-Ardakani MJ, et al. Introducing tumor necrosis factor as a prominent player in celiac disease and type 1 diabetes mellitus. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl1):S123.

PubMed  PubMed Central  Google Scholar 

Khalifa AS, Elshebiny A, Eed EM, Elhelbawy MG, Rizk SK. Genetic variations of tumor necrosis factor-α and prostaglandin-endoperoxide synthase 2 genes among Egyptian patients with type 2 diabetes mellitus and diabetic nephropathy. Gene Rep. 2022;29:101678.

Article  CAS  Google Scholar 

Yang R, Trevillyan JM. c-Jun N-terminal kinase pathways in diabetes. Int J Biochem Cell Biol. 2008;40(12):2702–6.

Article  CAS  PubMed  Google Scholar 

Lagathu C, Yvan-Charvet L, Bastard J-P, Maachi M, Quignard-Boulange A, Capeau J, et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia. 2006;49:2162–73.

Article  CAS  PubMed  Google Scholar 

Kim JY, Park KJ, Kim GH, Jeong EA, Lee DY, Lee SS, et al. In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β-cell dysfunction during the progression of type-2 diabetes. Cell Signal. 2013;25(12):2348–61.

Article  CAS  PubMed  Google Scholar 

Cui S, Zhu Y, Du J, Khan MN, Wang B, Wei J, et al. CXCL8 antagonist improves diabetic nephropathy in male mice with diabetes and attenuates high glucose–induced mesangial injury. Endocrinology. 2017;158(6):1671–84.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif