MiR-9-3 hypermethylation is associated with stages of diabetic retinopathy

Khalil H. Diabetes microvascular complications-A clinical update. Diabetes Metab Syndr Clin Res Rev. 2017;11:S133–9. https://doi.org/10.1016/j.dsx.2016.12.022.

Article  Google Scholar 

Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to Sight: an analysis for the global burden of Disease Study. Lancet Glob Heal. 2021;9(2):e144–60. https://doi.org/10.1016/S2214-109X(20)30489-7.

Article  Google Scholar 

Ghamdi AH, Al. Clinical predictors of Diabetic Retinopathy Progression; a systematic review. Curr Diabetes Rev. 2020;16(3):242–7. https://doi.org/10.2174/1573399815666190215120435.

Article  PubMed  Google Scholar 

Shiferaw WS, Akalu TY, Desta M, Kassie AM, Petrucka PM, Assefa HK, et al. Glycated hemoglobin A1C level and the risk of diabetic retinopathy in Africa: a systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev. 2020;14(6):1941–9. https://doi.org/10.1016/j.dsx.2020.10.003.

Article  Google Scholar 

Liu Y, Li J, Ma J, Tong N. The threshold of the severity of Diabetic Retinopathy below which intensive glycemic control is Beneficial in Diabetic patients: estimation using data from large randomized clinical trials. J Diabetes Res. 2020;2020:1–6. https://doi.org/10.1155/2020/8765139.

Article  CAS  Google Scholar 

Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Prim. 2016;2(1):16012. https://doi.org/10.1038/nrdp.2016.12.

Article  PubMed  Google Scholar 

Voigt M, Schmidt S, Lehmann T, Köhler B, Kloos C, Voigt U, et al. Prevalence and progression rate of Diabetic Retinopathy in type 2 diabetes patients in correlation with the duration of diabetes. Exp Clin Endocrinol Diabetes. 2018;28(09):570–6. https://doi.org/10.1055/s-0043-120570.

Article  CAS  Google Scholar 

Gange WS, Lopez J, Xu BY, Lung K, Seabury SA, Toy BC. Incidence of proliferative Diabetic Retinopathy and other Neovascular sequelae at 5 years following diagnosis of type 2 diabetes. Diabetes Care. 2021;44(11):2518–26. https://doi.org/10.2337/dc21-0228.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. https://doi.org/10.1038/nrg1379.

Article  CAS  PubMed  Google Scholar 

Kowluru RA, Mohammad G. Epigenetic modifications in diabetes. Metabolism. 2022;126:154920. https://doi.org/10.1016/j.metabol.2021.154920.

Article  CAS  PubMed  Google Scholar 

Smit-McBride Z, Nguyen AT, Yu AK, Modjtahedi SP, Hunter AA, Rashid S, et al. Unique molecular signatures of microRNAs in ocular fluids and plasma in diabetic retinopathy. PLoS ONE. 2020;15(7):e0235541. https://doi.org/10.1371/journal.pone.0235541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hildebrandt MAT, Gu J, Lin J, Ye Y, Tan W, Tamboli P, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29:5724–8. https://doi.org/10.1038/onc.2010.305.

Article  CAS  PubMed  Google Scholar 

Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281(37):26932–42. https://doi.org/10.1074/jbc.M601225200.

Article  CAS  PubMed  Google Scholar 

Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 2011;278(7):1167–74. https://doi.org/10.1111/j.1742-4658.2011.08042.x.

Article  CAS  PubMed  Google Scholar 

Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 2006;4:210–20. https://doi.org/10.1371/journal.pbio.0040031.

Article  CAS  Google Scholar 

Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105–17. https://doi.org/10.1016/j.cmet.2005.07.001.

Article  CAS  PubMed  Google Scholar 

Hu D, Wang Y, Zhang H, Kong D. Identification of miR-9 as a negative factor of insulin secretion from beta cells. J Physiol Biochem. 2018;74(2):291–9. https://doi.org/10.1007/s13105-018-0615-3.

Article  CAS  PubMed  Google Scholar 

Ostenson C-G, Gaisano H, Sheu L, Tibell A, Bartfai T. Impaired gene and Protein Expression of Exocytotic Soluble N -Ethylmaleimide Attachment Protein Receptor Complex Proteins in pancreatic islets of type 2 Diabetic patients. Diabetes. 2006;55:435–40. https://doi.org/10.2337/diabetes.55.02.06.db04-1575.

Article  CAS  PubMed  Google Scholar 

Dos Santos Nunes MK, Silva AS, Evangelista IWQ, Filho JM, Gomes CNAP, do Nascimento RAF, et al. Analysis of the DNA methylation profiles of miR-9-3, miR-34a, and miR-137 promoters in patients with diabetic retinopathy and nephropathy. J Diabetes Complications. 2018;32(6):593–601. https://doi.org/10.1016/j.jdiacomp.2018.03.013.

Article  PubMed  Google Scholar 

De Assis CS, Silva AS, dos Santos Nunes MK, Filho JM, do Nascimento RAF, Gomes CNAP, et al. Methylation Profile of Mir-9-1 and miR-9-1/-9-3 as potential biomarkers of Diabetic Retinopathy. Curr Diabetes Rev. 2021;17(6). https://doi.org/10.2174/1573399817666210101104326.

Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1):61–9. https://doi.org/10.1007/s00592-010-0226-0.

Article  CAS  PubMed  Google Scholar 

Motawae TM, Ismail MF, Shabayek MI, Seleem MM. MicroRNAs 9 and 370 Association with Biochemical Markers in T2D and CAD Complication of T2D. Ray RB, ed. PloS One. 2015;10(5):e0126957. https://doi.org/10.1371/journal.pone.0126957.

Wang J, Chen S, Jiang F, You C, Mao C, Yu J, et al. Vitreous and plasma VEGF levels as predictive factors in the progression of proliferative Diabetic Retinopathy after Vitrectomy. PLoS ONE. 2014;9(10):e110531. https://doi.org/10.1371/journal.pone.0110531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Lv FL, Wang GH. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur Rev Med Pharmacol Sci. 2018;22:5071–6. https://doi.org/10.26355/eurrev_201808_15699.

Article  CAS  PubMed  Google Scholar 

Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. Mech Angiogenes. 2005;94209–31. https://doi.org/10.1007/3-7643-7311-3_15.

Xiao Y, Guo S, Zhang Y, Bian Z, Jia L, Hu Y, et al. Diabetic nephropathy: serum miR-9 confers a poor prognosis in and is associated with level changes of vascular endothelial growth factor and pigment epithelium-derived factor. Biotechnol Lett. 2017;39(10):1583–90. https://doi.org/10.1007/s10529-017-2390-6.

Article  CAS  PubMed  Google Scholar 

Kim BG, Gao MQ, Kang S, Choi YP, Lee JH, Kim JE, et al. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis. 2017;8(3):e2646–2646. https://doi.org/10.1038/cddis.2017.73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, Skariah G, et al. MicroRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep. 2017;20:1533–42. https://doi.org/10.1016/j.celrep.2017.07.051.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu WL. MicroRNA-9 inhibits retinal neovascularization in rats with diabetic retinopathy by targeting vascular endothelial growth factor A. J Cell Biochem. 2019;120(5):8032–43. https://doi.org/10.1002/jcb.28081.

Article  CAS  PubMed  Google Scholar 

Brasil. Ministério Da Saúde. Secretaria De Vigilância em Saúde. VIGITEL Brasil 2006–2021. Vigilância De fatores de risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde; 2022.

Google Scholar 

Chew EY, Ambrosius WT, Howard LT, Greven CM, Johnson S, Danis RP, et al. Rationale, design, and methods of the action to Control Cardiovascular Risk in Diabetes Eye Study (ACCORD-EYE). Am J Cardiol. 2007;99(12 SUPPL):S103–11. https://doi.org/10.1016/j.amjcard.2007.03.028.

Article  Google Scholar 

Gangnon RE, Davis MD, Hubbard LD, Aiello LM, Chew EY, Ferris FL et al. A Severity Scale for Diabetic Macular Edema Developed from ETDRS Data. Invest Ophthalmol Vis Sci. 2008 1;49(11):5041–7. https://doi.org/10.1167/iovs.08-2231.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of Low-Density Lipoprotein Cholesterol in plasma, without Use of the Preparative Ultracentrifuge. Clin Chem. 1972;18(6):499–502. https://doi.org/10.1093/clinchem/18.6.499.

Article  CAS  PubMed  Google Scholar 

Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci. 1996;93(18):9821–6. https://doi.org/10.1073/pnas.93.18.9821.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Rubeaan K, Abu El-Asrar AM, Youssef AM, Subhani SN, Ahmad NA, Al-Sharqawi AH, et al. Diabetic retinopathy and its risk factors in a society with a type 2 diabetes epidemic: a Saudi National Diabetes Registry-based study. Acta Ophthalmol. 2015;93(2):e140–7. https://doi.org/10.1111/aos.12532.

Article  PubMed  Google Scholar 

Nittala MG, Keane PA, Zhang K, Sadda SR. Risk factors for proliferative Diabetic Retinopathy in a latino American Population. Retina. 2014;34:1594. https://doi.org/10.1097/IAE.0000000000000117.

Article  PubMed  PubMed Central  Google Scholar 

Al-Muhtaresh HA, Al-Kafaji G. Evaluation of two-diabetes related

留言 (0)

沒有登入
gif