Analysis of neural networks for routine classification of sixteen ultrasound upper abdominal cross sections

Levin DC, Rao VM (2016) Factors that will determine future utilization trends in diagnostic imaging. Journal of the American College of Radiology 13:904-908

Article  PubMed  Google Scholar 

Richards M, Maskell G, Halliday K, et al (2022) Diagnostics: a major priority for the NHS. Future healthcare journal 9:133

Article  PubMed  PubMed Central  Google Scholar 

Shung KK (2011) Diagnostic ultrasound: Past, present, and future. J Med Biol Eng 31:371-374

Article  Google Scholar 

Stewart KA, Navarro SM, Kambala S, et al (2020) Trends in ultrasound use in low and middle income countries: a systematic review. International Journal of Maternal and Child Health and AIDS 9:103

PubMed  PubMed Central  Google Scholar 

Naomi C (2004) Strategies for eliminating the sonographer shortage: Recruitment, retention, and educational perspectives. Journal of Diagnostic Medical Sonography 20:408-413

Article  Google Scholar 

Parker P, Harrison G (2015) Educating the future sonographic workforce: Membership survey report from the British Medical Ultrasound Society. Ultrasound 23:231-241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan L, Fung T, Leung T, et al (2009) Volumetric (3D) imaging reduces inter‐and intraobserver variation of fetal biometry measurements. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 33:447-452

Article  CAS  PubMed  Google Scholar 

Harrison G, Harris A (2015) Work-related musculoskeletal disorders in ultrasound: Can you reduce risk? Ultrasound 23:224-230

Article  PubMed  PubMed Central  Google Scholar 

Coffin CT (2014) Work-related musculoskeletal disorders in sonographers: a review of causes and types of injury and best practices for reducing injury risk. Reports in Medical Imaging:15–26

Koski JM (2000) Ultrasound guided injections in rheumatology. The Journal of rheumatology 27:2131-2138

CAS  PubMed  Google Scholar 

Marhofer P, Harrop-Griffiths W, Kettner S, et al (2010) Fifteen years of ultrasound guidance in regional anaesthesia: part 1. British journal of anaesthesia 104:538-546

Article  CAS  PubMed  Google Scholar 

Litjens G, Kooi T, Bejnordi BE, et al (2017) A survey on deep learning in medical image analysis. Medical image analysis 42:60-88

Article  PubMed  Google Scholar 

Kinsler LE, Frey AR, Coppens AB, et al (1999) Fundamentals of acoustics.

Hindi A, Peterson C, Barr RG (2013) Artifacts in diagnostic ultrasound. Reports in Medical Imaging 6:29-48

Google Scholar 

Feldman MK, Katyal S, Blackwood MS (2009) US artifacts. Radiographics 29:1179-1189

Article  PubMed  Google Scholar 

Wu K, Chen X, Ding M (2014) Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 125:4057-4063

Article  Google Scholar 

Han S, Kang H-K, Jeong J-Y, et al (2017) A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine & Biology 62:7714

Article  Google Scholar 

Chi J, Walia E, Babyn P, et al (2017) Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. Journal of digital imaging 30:477-486

Article  PubMed  PubMed Central  Google Scholar 

Guo M, Du Y (2019) Classification of Thyroid Ultrasound Standard Plane Images using ResNet-18 Networks. IEEE,324–328

Reddy DS, Bharath R, Rajalakshmi P (2018) A novel computer-aided diagnosis framework using deep learning for classification of fatty liver disease in ultrasound imaging. IEEE,1–5

Sabih D, Hussain M (2012) Automated classification of liver disorders using ultrasound images. Journal of medical systems 36:3163-3172

Article  PubMed  Google Scholar 

Pesteie M, Abolmaesumi P, Ashab HA-D, et al (2015) Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features. International journal of computer assisted radiology and surgery 10:901-912

Article  PubMed  Google Scholar 

Zhu P, Li Z (2016) Guideline-based machine learning for standard plane extraction in 3D cardiac ultrasound

Gao Y, Zhu Y, Liu B, et al (2020) Automated recognition of ultrasound cardiac views based on deep learning with graph constraint. medRxiv

Morioka C, Meng F, Taira R, et al (2016) Automatic classification of ultrasound screening examinations of the abdominal aorta. Journal of digital imaging 29:742-748

Article  PubMed  PubMed Central  Google Scholar 

Cheng PM, Malhi HS (2017) Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. Journal of digital imaging 30:234-243

Article  PubMed  Google Scholar 

Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115:211-252

Article  Google Scholar 

Xu Z, Huo Y, Park J, et al (2018) Less is more: Simultaneous view classification and landmark detection for abdominal ultrasound images. Springer,711–719

Reddy DS, Rajalakshmi P, Mateen M (2021) A deep learning based approach for classification of abdominal organs using ultrasound images. Biocybernetics and Biomedical Engineering 41:779-791

Article  Google Scholar 

Sonographers JSo (2020) Standardized method of abdominal ultrasound.https://www.jss.org/english/standard/abdominal.html, Accessed: 27/11/2023

Corperation CMS (2021) Canon Aplio i800. Canon Medical Systems Corperation,https://global.medical.canon/products/ultrasound/aplioi800_imaging, Accessed: 27/11/2023

Mildenberger P, Eichelberg M, Martin E (2002) Introduction to the DICOM standard. European radiology 12:920-927

Article  PubMed  Google Scholar 

Paszke A, Gross S, Chintala S, et al (2017) Automatic differentiation in pytorch.

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25:1097-1105

Google Scholar 

Krizhevsky A (2014) One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:14045997

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556

He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition.770–778

Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions.1–9

Szegedy C, Vanhoucke V, Ioffe S, et al (2016) Rethinking the inception architecture for computer vision.2818–2826

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980

Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6:107-116

Article  Google Scholar 

Ide H, Kurita T (2017) Improvement of learning for CNN with ReLU activation by sparse regularization. IEEE,2684–2691

Lawley A, Hampson R, Worrall K, et al (2023) Prescriptive method for optimizing cost of data collection and annotation in machine learning of clinical ultrasound.

Comments (0)

No login
gif