Abdelkarem FM, Desoky EEK, Nafady AM, Allam AE, Mahdy A, Ashour A et al (2021) Two new polyhydroxylated steroids from Egyptian soft coral Heteroxenia fuscescens (Fam.; Xeniidae). Nat Prod Res 35:236–243. https://doi.org/10.1080/14786419.2019.1624958
Article CAS PubMed Google Scholar
Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78. https://doi.org/10.1016/S0065-2776(08)60532-5
Article CAS PubMed Google Scholar
Aldakheel FM (2021) Allergic diseases: a comprehensive review on risk factors, immunological mechanisms, link with COVID-19, potential treatments, and role of allergen bioinformatics. Int J Environ Res Public Health 18:12105. https://doi.org/10.3390/IJERPH182212105
Article CAS PubMed PubMed Central Google Scholar
Amin K (2012) The role of mast cells in allergic inflammation. Respir Med 106:9–14. https://doi.org/10.1016/J.RMED.2011.09.007
Asiamah I, Obiri SA, Tamekloe W, Armah FA, Borquaye LS (2023) Applications of molecular docking in natural products-based drug discovery. Sci African 20:e01593. https://doi.org/10.1016/J.SCIAF.2023.E01593
Bordbar S, Anwar F, Saari N (2011) High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs 9:1761–1805. https://doi.org/10.3390/MD9101761
Article CAS PubMed PubMed Central Google Scholar
Broide DH (2009) Immunomodulation of allergic disease. Annu Rev Med 60:279–291. https://doi.org/10.1146/ANNUREV.MED.60.041807.123524
Article CAS PubMed PubMed Central Google Scholar
Burton OT, Oettgen HC (2011) Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev 242:128–143. https://doi.org/10.1111/J.1600-065X.2011.01024.X
Article CAS PubMed PubMed Central Google Scholar
Caulier G, Mezali K, Soualili DL, Decroo C, Demeyer M, Eeckhaut I et al (2016) Chemical characterization of saponins contained in the body wall and the Cuvierian tubules of the sea cucumber Holothuria (Platyperona) sanctori (Delle Chiaje, 1823). Biochem Syst Ecol 68:119–127. https://doi.org/10.1016/J.BSE.2016.06.005
Charles A, Janeway J, Travers P, Walport M, Shlomchik MJ (2001) Effector mechanisms in allergic reactions. In: Immunobiology: the immune system in health and disease, 5th edn, Garl Sci New York. https://www.ncbi.nlm.nih.gov/books/NBK27112/
Dhinakaran DI, Lipton AP (2014) Bioactive compounds from Holothuria atra of Indian ocean. Springerplus 3:673. https://doi.org/10.1186/2193-1801-3-673
Article CAS PubMed PubMed Central Google Scholar
Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CMM, Tsai M (2004) Mast cells as “tunable” effector andimmunoregulatory cells: recent advances. Annu Rev 23:749–786. https://doi.org/10.1146/ANNUREV.IMMUNOL.21.120601.141025
Grauso L, Yegdaneh A, Sharifi M, Mangoni A, Zolfaghari B, Lanzotti V (2019) Molecular networking-based analysis of cytotoxic saponins from sea cucumber Holothuria atra. Mar Drugs 17:86. https://doi.org/10.3390/MD17020086
Article CAS PubMed PubMed Central Google Scholar
Gupta SS (2011) Development of antihistamine and anti-allergic activity after prolonged administration of a plant saponin from Clerodendron serratum. J Pharm Pharmacol 20:801–802. https://doi.org/10.1111/J.2042-7158.1968.TB09644.X
Han EH, Park JH, Kim JY, Chung YC, Jeong HG (2009) Inhibitory mechanism of saponins derived from roots of Platycodon grandiflorum on anaphylactic reaction and IgE-mediated allergic response in mast cells. Food Chem Toxicol 47:1069–1075. https://doi.org/10.1016/J.FCT.2009.01.041
Article CAS PubMed Google Scholar
Hossain A, Dave D, Shahidi F (2022) Antioxidant potential of sea cucumbers and their beneficial effects on human health. Mar Drugs 20:521. https://doi.org/10.3390/MD20080521
Article CAS PubMed PubMed Central Google Scholar
Ishida M, Nishi K, Watanabe H, Sugahara T (2013) Inhibitory effect of aqueous spinach extract on degranulation of RBL-2H3 cells. Food Chem 136:322–327. https://doi.org/10.1016/J.FOODCHEM.2012.08.079
Article CAS PubMed Google Scholar
Ismatullah H, Jabeen I, Saeed MT (2020) Biological regulatory network (BRN) analysis and molecular docking simulations to probe the modulation of IP3R mediated Ca2+ signaling in cancer. Genes (basel) 12:34. https://doi.org/10.3390/GENES12010034
Iwasaki M, Saito K, Takemura M, Sekikawa K, Fujii H, Yamada Y et al (2003) TNF-α contributes to the development of allergic rhinitis in mice. J Allergy Clin Immunol 112:134–140. https://doi.org/10.1067/mai.2003.1554
Article CAS PubMed Google Scholar
Jafarinia M, Sadat Hosseini M, Kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M, Eskandari N (2020) Quercetin with the potential effect on allergic diseases. Allergy, Asthma Clin Immunol 16:1–11. https://doi.org/10.1186/S13223-020-00434-0/TABLES/3
Kakuno T, Yoshikawa K, Arihara S (1991) Ilexosides A, B, C and D, anti-allergic 18,19-seco-ursane glycosides from fruit of Ilex crenata. Tetrahedron Lett 32:3535–3538. https://doi.org/10.1016/0040-4039(91)80826-R
Kakuta K, Baba M, Ito S, Kinoshita K, Koyama K, Takahashi K (2012) New triterpenoid saponins from cacti and anti-type I allergy activity of saponins from cactus. Bioorg Med Chem Lett 22:4793–4800. https://doi.org/10.1016/J.BMCL.2012.05.058
Article CAS PubMed Google Scholar
Kamyab E, Kellermann MY, Kunzmann A, Schupp PJ (2020) Chemical biodiversity and bioactivities of saponins in echinodermata with an emphasis on sea cucumbers (holothuroidea). YOUMARES 9—Ocean Our Res Our Future. https://doi.org/10.1007/978-3-030-20389-4_7
Khotimchenko Y (2018) Pharmacological potential of sea cucumbers. Int J Mol Sci 19:1342. https://doi.org/10.3390/IJMS19051342
Article PubMed PubMed Central Google Scholar
Khurana Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111:677–690. https://doi.org/10.1067/MAI.2003.1333
Kim EA, Han EJ, Kim J, Fernando IPS, Oh JY, Kim KN et al (2022) Anti-allergic effect of 3,4-dihydroxybenzaldehyde isolated from Polysiphonia morrowii in IgE/BSA-stimulated mast cells and a passive cutaneous anaphylaxis mouse model. Mar Drugs 20:133. https://doi.org/10.3390/MD20020133/S1
Article CAS PubMed PubMed Central Google Scholar
Kishikawa A, Amen Y, Shimizu K (2017) Anti-allergic triterpenes isolated from olive milled waste. Cytotechnology 69:307–315. https://doi.org/10.1007/s10616-016-0058-z
Article CAS PubMed PubMed Central Google Scholar
Kitagawa I, Nishino T, Kobayashi M, Kyogoku Y (1981a) Marine natural products. VIII. Bioactive triterpene-oligoglycosides from the sea cucumber Holothuria leucospilota BRANDT (2). Structure of Holethurin A. Chem Pharm Bull 29:1951–1956. https://doi.org/10.1248/CPB.29.1951
Kitagawa I, Nishino T, Kobayashi M, Matsuno T, Akutsu H, Kyogoku Y (1981b) Marine natural products. VII. Bioactive triterpene-oligoglycosides from the sea cucumber Holothuria leucospilota BRANDT (1). Structure of Holothurin B. Chem Pharm Bull 29:1942–1950. https://doi.org/10.1248/CPB.29.1942
Kobayashi M, Hori M, Kan K, Yasuzawa T, Matsui M, Suzuki S, Kitagawa K (1991) Marine natural products. XXVII. Distribution of lanostane-type triterpene oligoglycosides in ten kinds of okinawan sea cucumbers. Chem Pharm Bull 39:2282–2287. https://doi.org/10.1248/CPB.39.2282
Comments (0)