Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317:165–82. https://doi.org/10.1001/jama.2016.19043.
He FJ, MacGregor GA. Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nat Rev Cardiol. 2018;15:371–7. https://doi.org/10.1038/s41569-018-0004-1.
• Balafa O, Kalaitzidis RG. Salt sensitivity and hypertension. J Hum Hypertens. 2021;35:184–92. https://doi.org/10.1038/s41371-020-00407-1. This review describes mechanisms of salt-sensitive hypertension.
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60. https://doi.org/10.1084/jem.20070657.
Article CAS PubMed PubMed Central Google Scholar
Mattson DL, Lund H, Guo C, Rudemiller N, Geurts AM, Jacob H. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am J Physiol Regul Integr Comp Physiol. 2013;304:R407–14. https://doi.org/10.1152/ajpregu.00304.2012.
Article CAS PubMed PubMed Central Google Scholar
Crowley SD, Song Y-S, Lin EE, Griffiths R, Kim H-S, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1089-1097. https://doi.org/10.1152/ajpregu.00373.2009.
Article CAS PubMed PubMed Central Google Scholar
Rudemiller N, Lund H, Jacob HJ, Geurts AM, Mattson DL. PhysGen Knockout Program. CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension. 2014;63:559–64. https://doi.org/10.1161/hypertensionaha.113.02191.
Article CAS PubMed Google Scholar
Uchida HA, Kristo F, Rateri DL, Lu H, Charnigo R, Cassis LA, et al. Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis. 2010;211:399–403. https://doi.org/10.1016/j.atherosclerosis.2010.02.034.
Article CAS PubMed PubMed Central Google Scholar
Senchenkova EY, Russell J, Kurmaeva E, Ostanin D, Granger DN. Role of T lymphocytes in angiotensin II-mediated microvascular thrombosis. Hypertension. 2011;58:959–65. https://doi.org/10.1161/hypertensionaha.111.173856.
Article CAS PubMed Google Scholar
Senchenkova EY, Russell J, Yildirim A, Granger DN, Gavins FNE. Novel role of T cells and IL-6 (interleukin-6) in angiotensin II-induced microvascular dysfunction. Hypertension. 2019;73:829–38. https://doi.org/10.1161/hypertensionaha.118.12286.
Mian MOR, Barhoumi T, Briet M, Paradis P, Schiffrin EL. Deficiency of T-regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J Hypertens. 2016;34:97–108. https://doi.org/10.1097/hjh.0000000000000761.
Article CAS PubMed Google Scholar
Ji H, Pai AV, West CA, Wu X, Speth RC, Sandberg K. Loss of resistance to angiotensin II–Induced hypertension in the jackson laboratory recombination-activating gene null mouse on the C57BL/6J Background. hypertension. 2017;69(6):1121–7. https://doi.org/10.1161/hypertensionaha.117.09063.
Article CAS PubMed Google Scholar
• Seniuk A, Thiele JL, Stubbe A, Oser P, Rosendahl A, Bode M, et al. B6. Rag1 knockout mice generated at the Jackson Laboratory in 2009 show a robust wild-type hypertensive phenotype in response to Ang II (Angiotensin II). Hypertension. 2020;75(4):1110–6. https://doi.org/10.1161/hypertensionaha.119.13773. This article describes an unexpected outcome indicating that T-cell deficiency does not prevent Ang II-induced hypertension in RAG1−/− mice.
Article CAS PubMed Google Scholar
• Madhur MS, Kirabo A, Guzik TJ, Harrison DG. From rags to riches: moving beyond rag1 in studies of hypertension. Hypertension. 2020;75:930–34. https://doi.org/10.1161/hypertensionaha.119.14612. This review from our research group describes the divergent findings in RAG1−/− model studies.
• Bode M, Herrnstadt GR, Dreher L, Ehnert N, Kirkerup P, Lindenmeyer MT, et al. Deficiency of complement C3a and C5a receptors does not prevent angiotensin II–induced hypertension and hypertensive end-organ damage. Hypertension. 2024;81(1):138–50. https://doi.org/10.1161/hypertensionaha.123.21599. This study found that deficiency in complement C3a and C5a receptors, which are implicated in the regulation of Treg conversion, does not affect the development of hypertension or hypertensive end-organ damage in an angiotensin II-induced hypertension model.
Article CAS PubMed Google Scholar
Youn JC, Yu HT, Lim BJ, Koh MJ, Lee J, Chang DY, et al. Immunosenescent CD8+ T cells and CXC chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013;62:126–33. https://doi.org/10.1161/hypertensionaha.113.00689.
Article CAS PubMed Google Scholar
Itani HA, McMaster WG Jr, Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba AM, et al. Activation of human t cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension. 2016;68:123–32. https://doi.org/10.1161/hypertensionaha.116.07237.
Article CAS PubMed Google Scholar
Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57:469–76. https://doi.org/10.1161/hypertensionaha.110.162941.
Article CAS PubMed Google Scholar
Chan C, Sobey C, Lieu M, Ferens D, Kett M, Diep H, et al. Abstract 074: An obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension. 2015;66:1023–33. https://doi.org/10.1161/hypertensionaha.115.05779.
Article CAS PubMed Google Scholar
Shah KH, Shi P, Giani JF, Janjulia T, Bernstein EA, Li Y, et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ Res. 2015;117:858–69. https://doi.org/10.1161/circresaha.115.306539.
Article CAS PubMed PubMed Central Google Scholar
Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II–infused macrophage colony-stimulating factor–deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25:2106–13. https://doi.org/10.1161/01.atv.0000181743.28028.57.
Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124:1370–81. https://doi.org/10.1161/circulationaha.111.034470.
Article CAS PubMed Google Scholar
Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res. 2019;115:776–87. https://doi.org/10.1093/cvr/cvy252.
Article CAS PubMed Google Scholar
Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124:4642–56. https://doi.org/10.1172/JCI74084.
Article PubMed PubMed Central Google Scholar
Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, Xiao L, et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 2017;21:1009–20. https://doi.org/10.1016/j.celrep.2017.10.002.
Article CAS PubMed PubMed Central Google Scholar
Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, Xiao L, Pandey AK, et al. High Salt Activates CD11c+ Antigen-Presenting Cells via SGK (Serum Glucocorticoid Kinase) 1 to Promote Renal Inflammation and Salt-Sensitive Hypertension. Hypertension. 2019;74:555–63. https://doi.org/10.1161/hypertensionaha.119.12761.
• Pitzer A, Elijovich F, Laffer CL, Ertuglu LA, Sahinoz M, Saleem M, et al. DC ENaC-Dependent inflammasome activation contributes to salt-sensitive hypertension. Circ Res. 2022;131:328–44. https://doi.org/10.1161/circresaha.122.320818. This study, performed by our research group, revealed that ENaC-mediated IsoLG production in DCs instigates the formation and activation of the NLRP3 inflammasome. This finding increases our understanding of a critical pathway in innate immunity that contributes to salt-sensitive hypertension.
Article CAS PubMed PubMed Central Google Scholar
Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69:169–81. https://doi.org/10.1016/j.molcel.2017.06.017.
Article CAS PubMed Google Scholar
Mori K, Ma W, Gething MJ, Sambrook J. A transmembrane protein with a cdc2+/CDC28-Related kinase activity is required for signaling from the er to the nucleus. Cell. 1993;74:743–743. https://doi.org/10.1016/0092-8674(93)90521-Q.
Article CAS PubMed Google Scholar
Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993;73:1197–206. https://doi.org/10.1016/0092-8674(93)90648-a.
Article CAS PubMed Google Scholar
Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6. https://doi.org/10.1126/science.1209038.
Article CAS PubMed Google Scholar
Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science. 2011;334:1086–90. https://doi.org/10.1126/science.1209235.
Comments (0)