Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org/10.1186/s12876-014-0189-7.
Article CAS PubMed PubMed Central Google Scholar
Snelson M, Tan S, Clarke R, de Pasquale C, Thallas-Bonke V, Nguyen T, et al. Processed Foods drive Intestinal Barrier permeability and Microvascular Diseases. Sci Adv. 2021;7(14). https://doi.org/10.1126/sciadv.abe4841.
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol. 2024. https://doi.org/10.1038/s41569-023-00964-1.
Koch F, Thom U, Albrecht E, Weikard R, Nolte W, Kuhla B, et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc Natl Acad Sci. 2019;116(21):10333–8. https://doi.org/10.1073/pnas.1820130116.
Article CAS PubMed PubMed Central Google Scholar
Houghton MJ, Snipe RMJ, Williamson G, Costa RJS. Plasma measurements of the dual sugar test reveal carbohydrate immediately alleviates intestinal permeability caused by exertional heat stress. J Physiol. 2023;601(20):4573–89. https://doi.org/10.1113/jp284536.
Article CAS PubMed Google Scholar
Keirns BH, Koemel NA, Sciarrillo CM, Anderson KL, Emerson SR. Exercise and intestinal permeability: another form of exercise-induced hormesis? Am J Physiol Gastrointest Liver Physiol. 2020;319(4):G512–8. https://doi.org/10.1152/ajpgi.00232.2020.
Article CAS PubMed Google Scholar
Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63(8):1293–9. https://doi.org/10.1136/gutjnl-2013-305690.
Article CAS PubMed Google Scholar
Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr. 2020;11(1):77–91. https://doi.org/10.1093/advances/nmz061.
Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–53 e21. https://doi.org/10.1016/j.cell.2016.10.043.
Wang Z, Chen W-H, Li S-X, He Z-M, Zhu W-L, Ji Y-B, et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol Psychiatry. 2021;26(11):6277–92. https://doi.org/10.1038/s41380-021-01113-1.
Article CAS PubMed Google Scholar
Cuffee Y, Ogedegbe C, Williams NJ, Ogedegbe G, Schoenthaler A. Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep. 2014;16(10):483. https://doi.org/10.1007/s11906-014-0483-3.
Article PubMed PubMed Central Google Scholar
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–37. https://doi.org/10.1038/s41581-019-0244-2.
Article CAS PubMed Google Scholar
Helander HF, Fändriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol. 2014;49(6):681–9. https://doi.org/10.3109/00365521.2014.898326.
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol. 2018;10(1). https://doi.org/10.1101/cshperspect.a029314.
Luis AS, Hansson GC. Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host Microbe. 2023;31(7):1087–100. https://doi.org/10.1016/j.chom.2023.05.026.
Article CAS PubMed PubMed Central Google Scholar
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. https://doi.org/10.1126/science.1223490.
Article CAS PubMed PubMed Central Google Scholar
Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond). 2012;122(11):535–43. https://doi.org/10.1042/CS20110523.
Article CAS PubMed Google Scholar
Muralitharan RR, Zheng T, Dinakis E, Xie L, Barbaro-Wahl A, Jama HA, et al. GPR41/43 regulates blood pressure by improving gut epithelial barrier integrity to prevent TLR4 activation and renal inflammation. bioRxiv. 2023:2023.03.20.533376. https://doi.org/10.1101/2023.03.20.533376.
•• Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(7):417–32. https://doi.org/10.1038/s41575-023-00766-3. This review provides in-depth details of the molecular mechanisms by which paracellular permeability is regulated, with relevance to disease conditions of the gastrointestinal tract.
Article PubMed PubMed Central Google Scholar
O’Donoghue EJ, Krachler AM. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol. 2016;18(11):1508–17. https://doi.org/10.1111/cmi.12655.
Article CAS PubMed PubMed Central Google Scholar
Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr. 2021;8. https://doi.org/10.3389/fnut.2021.717925.
Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res. 2017;358(1):39–44. https://doi.org/10.1016/j.yexcr.2017.03.061.
Article CAS PubMed PubMed Central Google Scholar
Günzel D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch. 2017;469(1):35–44. https://doi.org/10.1007/s00424-016-1909-3.
Article CAS PubMed Google Scholar
Zuo L, Kuo W-T, Turner JR. Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol. 2020;10(2):327–40. https://doi.org/10.1016/j.jcmgh.2020.04.001.
Article PubMed PubMed Central Google Scholar
Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144(2):369–80. https://doi.org/10.1053/j.gastro.2012.10.035.
Article CAS PubMed Google Scholar
Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns. 2006;6(6):581–8. https://doi.org/10.1016/j.modgep.2005.12.001.
Article CAS PubMed Google Scholar
Weber CR, Raleigh DR, Su L, Shen L, Sullivan EA, Wang Y, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem. 2010;285(16):12037–46. https://doi.org/10.1074/jbc.M109.064808.
Article CAS PubMed PubMed Central Google Scholar
Tsai PY, Zhang B, He WQ, Zha JM, Odenwald MA, Singh G, et al. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe. 2017;21(6):671–81.e4. https://doi.org/10.1016/j.chom.2017.05.009.
Article CAS PubMed PubMed Central Google Scholar
Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011;286(36):31263–71. https://doi.org/10.1074/jbc.M111.238147.
Article CAS PubMed PubMed Central Google Scholar
Yamamoto T, Kojima T, Murata M, Takano K, Go M, Chiba H, et al. IL-1beta regulates expression of Cx32, occludin, and claudin-2 of rat hepatocytes via distinct signal transduction pathways. Exp Cell Res. 2004;299(2):427–41. https://doi.org/10.1016/j.yexcr.2004.06.011.
Article CAS PubMed Google Scholar
Raju P, Shashikanth N, Tsai PY, Pongkorpsakol P, Chanez-Paredes S, Steinhagen PR, et al. Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J Clin Invest. 2020;130(10):5197–208.
Comments (0)