Targeting the Gut Microbiome to Treat Cardiometabolic Disease

Cheng X, Ma T, Ouyang F, Zhang G, Bai Y. Trends in the prevalence of cardiometabolic multimorbidity in the United States, 1999–2018. Int J Environ Res Public Health. 2022;19(8):4726.

Article  PubMed  PubMed Central  Google Scholar 

Tang WHW, Backhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(16):2089–105.

Article  PubMed  PubMed Central  Google Scholar 

Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.

Article  CAS  PubMed  Google Scholar 

Katsimichas T, Antonopoulos AS, Katsimichas A, Ohtani T, Sakata Y, Tousoulis D. The intestinal microbiota and cardiovascular disease. Cardiovasc Res. 2019;115(10):1471–86.

Article  CAS  PubMed  Google Scholar 

Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10(10):735–44.

Article  CAS  PubMed  Google Scholar 

Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Tousoulis D, Guzik T, Padro T, et al. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovasc Res. 2022;118(16):3171–82.

Article  CAS  PubMed  Google Scholar 

Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–9.

Article  PubMed  Google Scholar 

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvi PS, Cowles RA. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease. Cells. 2021;10(7):1775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuteja S, Ferguson JF. Gut microbiome and response to cardiovascular drugs. Circ Genomic Precis Med. 2019;12(9):421–9.

Article  CAS  Google Scholar 

Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.

Article  CAS  PubMed  Google Scholar 

Katsimichas T, Theofilis P, Tsioufis K, Tousoulis D. Gut microbiota and coronary artery disease: current therapeutic perspectives. Metabolites. 2023;13(2):256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasan AU, Rahman A, Kobori H. Interactions between host PPARs and gut microbiota in health and disease. Int J Mol Sci. 2019;20(2):387.

Article  PubMed  PubMed Central  Google Scholar 

Tomas J, Mulet C, Saffarian A, et al. High-fat diet modifies the PPAR-gamma pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc Natl Acad Sci USA. 2016;113(40):E5934–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140(3):976–86.

Article  CAS  PubMed  Google Scholar 

Theofilis P, Vordoni A, Kalaitzidis RG. Trimethylamine N-oxide levels in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolites. 2022;12(12):1243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fennema D, Phillips IR, Shephard EA. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos: Biol Fate Chem. 2016;44(11):1839–50.

Article  CAS  PubMed  Google Scholar 

Al Samarraie A, Pichette M, Rousseau G. Role of the gut microbiome in the development of atherosclerotic cardiovascular disease. Int J Mol Sci. 2023;24(6):5420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canyelles M, Borras C, Rotllan N, Tondo M, Escola-Gil JC, Blanco-Vaca F. Gut microbiota-derived TMAO: a causal factor promoting atherosclerotic cardiovascular disease? Int J Mol Sci. 2023;24(3):1940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13(2):85–94.

Article  CAS  PubMed  Google Scholar 

Gorabi AM, Kiaie N, Khosrojerdi A, et al. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med. 2022;32(8):525–33.

Article  CAS  PubMed  Google Scholar 

Chen T, Huang W, Qian J, et al. Macrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosis. EBioMedicine. 2020;53:102706.

Article  PubMed  PubMed Central  Google Scholar 

Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494–501.

Article  CAS  PubMed  Google Scholar 

Diks SH, van Deventer SJ, Peppelenbosch MP. Lipopolysaccharide recognition, internalisation, signalling and other cellular effects. J Endotoxin Res. 2001;7(5):335–48.

CAS  PubMed  Google Scholar 

Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

Article  PubMed  PubMed Central  Google Scholar 

Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep. 2018;7(4):198–206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, He Y, Fu W, et al. Histone deacetylases (HDACs) and atherosclerosis: a mechanistic and pharmacological review. Front Cell Dev Biol. 2020;8:581015.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–212.

Article  PubMed  PubMed Central  Google Scholar 

Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo JY, Sniffen S, McGill Percy KC, Pallaval VB, Chidipi B. Gut Dysbiosis and immune system in atherosclerotic cardiovascular disease (ACVD). Microorganisms. 2022;10(1):108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyazaki-Anzai S, Masuda M, Kohno S, et al. Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. J Lipid Res. 2018;59(9):1709–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ottosson F, Brunkwall L, Smith E, et al. The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease. J Hypertens. 2020;38(12):2427–34.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif