Recent advances in nanomaterial-based drug delivery systems for melanoma therapy

K. Bromma, L. Cicon, W. Beckham, D.B. Chithrani. Gold nanoparticle mediated radiation response among key cell components of the tumour microenvironment for the advancement of cancer nanotechnology. Scientific Reports 10 (2020) 12096. https://www.nature.com/articles/s41598-020-68994-0.

A.L. Ruiz, C.B. Garcia, S.N. Gallón, T.J. Webster. Novel silver-platinum nanoparticles for anticancer and antimicrobial applications. International Journal of Nanomedicine 15 (2020) 169-179. https://doi.org/10.2147/IJN.S176737.

X.Y. Wong, A. Sena-torralba, R. Álvarez-Diduk, K. Muthoosamy, A. Merkoc. Nanomaterials for nanotheranostics: Their Properties According to Disease Needs. ACS Nano 14 (2020) 2585-2627. https://doi.org/10.1021/acsnano.9b08133.

P.N. Navya, A. Kaphle, S.P. Srinivas, S.K. Bhargava, V.M. Rotello, H.K. Daima. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence 6 (2019) 23. https://doi.org/10.1186/s40580-019-0193-2.

C.G.A. Das, V. Kumar, T.S. Dhas, V. Karthick, C.M.V. Kumar. Nanomaterials in anticancer applications and their mechanism of action- A review. Nanomedicine: Nanotechnology, Biology, and Medicine 47 (2023) 102613. https://doi.org/10.1016/j.nano.2022.102613.

M. Arnold, D. Singh, M. Laversanne, J. Vignat, S. Vaccarella, F. Meheus, A.E. Cust, E. de Vries, D.C. Whiteman, F. Bray. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatology 158 (2022) 495-503. https://doi.org/10.1001/jamadermatol.2022.0160.

M. Russi, R. Valeri, D. Marson, C. Danielli, F. Felluga, A. Tintaru, N. Skoko, S. Aulic, E. Laurini, S. Pricl. Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer. European Journal of Pharmaceutical Sciences 180 (2023) 106311. https://doi.org/10.1016/j.ejps.2022.106311.

F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 68 (2018) 394-424. https://doi.org/10.3322/caac.21492.

J.P. Gonçalves, A.F. da Cruz, A.M. Nunes, M.R. Meneghetti, H.R. de Barros, B.S. Borges, L.C.A.S. de Medeiros, M.J. Soares, M.P. dos Santos, M.T. Grassi, G.R. Rossi, D.L. Bellan, S.M.P. Biscaia, A.M. Cristal, J.L.A. Buzzo, Y.C. Ribeiro, A. Acco, M.B. Cardoso, F.F. Simas, E.S. Trindade, I.C. Riegel-Vidotti, C.C. de Oliveira. Biocompatible gum arabic-gold nanorod composite as an effective therapy for mistreated melanomas. International Journal of Biological Macromolecules 185 (2021) 551-561. https://doi.org/10.1016/j.ijbiomac.2021.06.172.

R. Cassano, M. Cuconato, G. Calviello, S. Serini, S. Trombino. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 26 (2021) 785. https://doi.org/10.3390/molecules26040785.

A.P. Cordeiro, P.E. Feuser, P.G. Figueiredo, E.S. da Cunha, G.R. Martinez, R.A. Machado-de-Avila, M.E.M. Rocha, P.H.H. de Araújo, C. Sayer. In vitro synergic activity of diethyldithiocarbamate and 4-nitrochalcone loaded in beeswax nanoparticles against melanoma (B16F10) cells. Materials Science & Engineering C 120 (2021) 111651. https://doi.org/10.1016/j.msec.2020.111651.

Q. Liu, M. Das, Y. Liu, L. Huang. Targeted drug delivery to melanoma. Advanced Drug Delivery Reviews 127 (2018) 208-221. https://doi.org/10.1016/j.addr.2017.09.016.

C.E. DeSantis, C.C. Lin, A.B. Mariotto, R.L. Siegel, K.D. Stein, J.L. Kramer, R. Alteri, A.S. Robbins, A. Jemal. Cancer treatment and survivorship statistics, 2014. CA. A Cancer Journal for Clinicians 64 (2014) 252-271. https://doi.org/10.3322/caac.21235.

S.J. Welsh, P.G. Corrie. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Therapeutic Advances in Medical Oncology 7 (2015) 122-136. https://doi.org/10.1177/1758834014566428.

S.A. Blankenstein, A.C.J. van Akkooi. Adjuvant systemic therapy in high-risk melanoma. Melanoma Research 29 (2019) 358-364. https://doi.org/10.1097/CMR.0000000000000604.

National Cancer Institute, Drugs approved for skin cancer, https://www.cancer.gov/about-cancer/treatment/drugs/skin. August 16, 2023.

J. Berk-Krauss, J.A. Stein, J. Weber, D. Polsky, A.C. Geller, New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986-2016. American Journal of Public Health 110 (2020) 731-733. https://doi.org/10.2105/AJPH.2020.305567.

Z. Payandeh, M. Yarahmadi, Z. Nariman-Saleh-Fam, V. Tarhriz, M. Islami, A.M. Aghdam, S. Eyvazi. Immune therapy of melanoma: overview of therapeutic vaccines. Journal of Cellular Physiology 234 (2019) 14612-14621. https://doi.org/10.1002/jcp.28181.

B. Zhao, Y.-Y. He. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Review of Anticancer Therapy 10 (2010) 1797-1809. https://doi.org/10.1586/era.10.154.

Y. Zeng, J. Chen, Z. Tian, M. Zhu, Y. Zhu. Preparation of mesoporous organosilica based nanosystem for in vitro synergistic chemo- and photothermal therapy. Journal of Inorganic Materials 35 (2020) 1365-1372. https://doi.org/10.15541/jim20200091.

J. Chen, Y. Cao, S. Lin, H. Niu, H. Zhang, L. Guan, C. Shu, A. Wu, Y. Bian, Y. Zhu. A responsive microneedle system for efficient anti-melanoma by combining self-enhanced chemodynamic therapy with photothermal therapy. Chemical Engineering Journal 431 (2022) 133466. https://doi.org/10.1016/j.cej.2021.133466.

T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, Y. Xia, Engineered nanoparticles for drug delivery in cancer therapy, Angewandte Chemie 53 (2014) 12320-12364. https://doi.org/10.1002/anie.201403036.

A.Z. Wilczewska, K. Niemirowicz, K.H. Markiewicz, H. Car, Nanoparticles as drug delivery systems, Pharmacol. Rep. 64 (2012) 1020-1037. https://doi.org/10.1016/S1734-1140(12)70901-5.

R. Singh, J.W. Lillard Jr. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology 86 (2009) 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004.

M. Pourmadadi, Md. Mahdi Eshaghi, S. Ostovar, Z. Mohammadi, R.K. Sharma, A.C. Paiva-Santos, E. Rahmani, A. Rahdar, S. Pandey. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. Journal of Drug Delivery Science and Technology 82 (2023) 104357. https://doi.org/10.1016/j.jddst.2023.104357.

T. Liu, Y. Lu, R. Zhan, W. Qian, G. Luo. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Advanced Drug Delivery Reviews 193 (2023) 114670. https://doi.org/10.3390/nano12040618.

S. Alarifi, D. Ali, S. Alkahtani, A. Verma, M. Ahamed, M. Ahmed, H.A. Alhadlaq. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. International Journal of Nanomedicine 8 (2013) 983. https://doi.org/10.2147/ijn.s42028.

M. Rizzi, S. Tonello, B.M. Esteva˜o, E. Gianotti, L. Marchese, F. Reno. Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. Journal of Photochemistry and Photobiology B. 167 (2017) 1-6. https://doi.org/10.1016/j.jphotobiol.2016.12.021.

A. Zielinska, I. Pereira, S. Antunes, F.J. Veiga, A.C. Santos, I. Nowak1, A.M. Silva and E.B. Souto. Mesoporous silica nanoparticles as drug delivery systems against melanoma, In Design of Nanostructures for Theranostics Applications, A.M. Grumezescu, (Ed.)., Elsevier Inc., 2018, p. 437-466. http://dx.doi.org/10.1016/B978-0-12-813669-0.00010-5.

A. Grosu-Bularda, L. Lazarescu, A. Stoian, I. Lascar. Immunology and skin cancer. Archives of Clinical Cases 5 (2018) 109-119. https://doi.org/10.22551/2018.20.0503.10137.

A. Katalinic, U. Kunze, T. Schafer. Epidemiology of cutaneous melanoma and nonmelanoma skin cancer in Schleswig-Holstein, Germany: incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Brazilian Journal of Dermatology. 149 (2003) 1200-1206. https://doi.org/10.1111/j.1365-2133.2003.05554.x.

H.M. Gloster Jr., D.G. Brodland. The epidemiology of skin cancer. Dermatologic Surgery 22 (1996) 217-226. https://doi.org/10.1111/j.1524-4725.1996.tb00312.x.

P.T. Bradford. Skin cancer in skin of color. Dermatology Nursing 21 (2009) 170-177 (206; quiz 178). https://pubmed.ncbi.nlm.nih.gov/19691228/.

U. Leiter, U. Keim, C. Garbe. Epidemiology of Skin Cancer: Update 2019, in Sunlight, Vitamin D Skin Cancer, Reichrath, J. (Ed.)., Springer, Cham., 2020, p. 123-139. https://doi.org/10.1007/978-3-030-46227-7-6.

M.R. Hussein. Ultraviolet radiation and skin cancer: molecular mechanisms. Journal of Cutaneous Pathology 32 (2005) 191-205. https://doi.org/10.1111/j.0303-6987.2005.00281.x.

A.I.M. foundation, About Melanoma https://www.aimatmelanoma.org/stages-of-melanoma/. September 9, 2023

M. Rastrelli, S. Tropea, C.R. Rossi, M. Alaibac, Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28 (2014) 1005-1011. https://iv.iiarjournals.org/content/28/6/1005.

D.L. Cummins, J.M. Cummins, H. Pantle, M.A. Silverman, A.L. Leonard, A. Chanmugam. Cutaneous malignant melanoma. Mayo Clinic Proceedings 81 (2006) 500-507. https://doi.org/10.4065/81.4.500.

S. Carr, C. Smith, J. Wernberg. Epidemiology and risk factors of melanoma. Surgical Clinics 100 (2020) 1-12, https://doi.org/10.1016/j.suc.2019.09.005.

J. Li, Y. Zhang, J. Tao. Targeted Nanoparticles for Drug Delivery to Melanoma: From Bench to Bedside. In Nanoscience in Dermatology, M.R. Hamblin, P. Avci, T.W. Prow, (Eds.)., Elsevier Inc., p. 203-215. http://dx.doi.org/10.1016/B978-0-12-802926-8.00016-1.

E. Hodis, I.R. Watson, G.V. Kryukov, S.T. Arold, M. Imielinski, J.P. Theurillat, E. Nickerson, D. Auclair, L. Li, C. Place, D. Dicara, A.H. Ramos, M.S. Lawrence, K. Cibulskis, A. Sivachenko, D. Voet, G. Saksena, N. Stransky, R.C. Onofrio, W. Winckler, K. Ardlie, N. Wagle, J. Wargo, K. Chong, D.L. Morton, K. Stemke-Hale, G. Chen, M. Noble, M. Meyerson, J.E. Ladbury, M.A. Davies, J.E. Gershenwald, S.N. Wagner, D.S.B. Hoon, D. Schadendorf, E.S. Lander, S.B. Gabriel, G. Getz, L.A. Garraway, L. Chin. A landscape of driver mutations in melanoma. Cell 150 (2012) 251-163. https://doi.org/10.1016/j.cell.2012.06.024.

P. Vukovi´c, L. Lugovi´c-Mihi´c, D. Cesic, G. Novak-Bili´c, M. Situm, S. Spoljar, Melanoma development: current knowledge on melanoma pathogenesis. Acta Dermatovenerologica Croatica 28 (2020) 163-163. https://hrcak.srce.hr/225444.

V.M. Prajapat, S. Mahajan, P.G. Paul, M. Aalhate, A. Mehandole, J. Madan, K. Dua, D.K. Chellappan, S.K. Singh, P.K. Singh. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. Journal of Drug Delivery Science and Technology 83 (2023) 104394. https://doi.org/10.1016/j.jddst.2023.104394.

C. Blank, I. Brown, A.C. Peterson, M. Spiotto, Y. Iwai, T. Honjo, T.F. Gajewski. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8þ T cells. Cancer Research 64 (2004) 1140-1145. https://doi.org/10.1158/0008-5472.can-03-3259.

Mellman, G. Coukos, G. Dranoff. Cancer immunotherapy comes of age. Nature 480 (2011) (7378) 480-489. https://doi.org/10.1038/nature10673.

C. Garbe, T.K. Eigentler, U. Keilholz, A. Hauschild, J.M. Kirkwood. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16 (2011) 5-24. https://doi.org/10.1634/theoncologist.2010-0190.

P. Das, N. Deshmukh, N. Badore, C. Ghulaxe, P. Patel. A review article on melanoma. Journal of Pharmaceutical Sciences and Research 8 (2016) 112-117. https://www.jpsr.pharmainfo.in/Documents/Volumes/vol8Issue02/jpsr08021610.

C.M. Balch, J.E. Gershenwald, S.J. Soong, J.F. Thompson, M.B. Atkins, D.R. Byrd, A.C. Buzaid, A.J. Cochran, D.G. Coit, S. Ding, A.M. Eggermont, K.T. Flaherty, P.A. Gimotty, J.M. Kirkwood, K.M. McMasters, M.C. Mihm Jr, D.L. Morton, M.I. Ross, A.J. Sober, V.K. Sondak. Final version of 2009 AJCC melanoma staging and classification. Journal of Clinical Oncology 27 (2009) 6199-6206. https://doi.org/10.1200/JCO.2009.23.4799.

G.Q. Phan, P. Attia, S.M. Steinberg, D.E. White, S.A. Rosenberg. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. Journal of Clinical Oncology 19 (2001) 3477-3782. https://doi.org/10.1200/JCO.2001.19.15.3477.

C. Beiu, C. Giurcaneanu, A.M. Grumezescu, A.M. Holban, L.G. Popa, M.M. Mihai, Nanosystems for improved targeted therapies in melanoma. Journal of Clinical Medicine 9 (2020) 318. https://doi.org/10.3390/jcm9020318.

K. Smetana Jr., L. Lacina, O. Kodet, Targeted therapies for melanoma. Cancers 12 (2020) 2494. https://doi.org/10.3390/cancers12092494.

[58] P.A. Ascierto, K. Flaherty, S. Goff. Emerging strategies in systemic therapy for the treatment of melanoma. American Society of Clinical Oncology Educational 38 (2018) 751-758. https://doi.org/10.1200/EDBK_199047.

R.B. Rigon, M.H. Oyafuso, A.T. Fujimura, M.L. Gonçalez, A.H.d. Prado, M.P.D. Gremiao, M. Chorilli. Nanotechnology-based drug delivery systems for melanoma antitumoral therapy. BioMed Research International 2015 (2015) 841817. https://doi.org/10.1155/2015/841817.

S.C. Weinmann, D.S. Pisetsky. Mechanisms of immune-related adverse events during the treatment of cancer with immune checkpoint inhibitors. Rheumatology 58(Suppl 7) (2019) vii59-vii67. https://doi.org/10.1093/rheumatology/kez308.

C. Robert, A. Ribas, J.D. Wolchok, F.S. Hodi, O. Hamid, R. Kefford, J.S. Weber, A.M. Joshua, W.-J. Hwu, T.C. Gangadhar, A. Patnaik, R. Dronca, H. Zarour, R.W. Joseph, P. Boasberg, B. Chmielowski, C. Mateus, M.A. Postow, K. Gergich, J. Elassaiss-Schaap, X.N. Li, R. Iannone, S.W. Ebbinghaus, S.P. Kang, A. Daud. Antiprogrammed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384 (2014) 1109-1117. https://doi.org/10.1016/S0140-6736(14)60958-2.

S.L. Topalian, M. Sznol, D.F. McDermott, H.M. Kluger, R.D. Carvajal, W.H. Sharfman, J.R. Brahmer, D.P. Lawrence, M.B. Atkins, J.D. Powderly, P.D. Leming, E.J. Lipson, I. Puzanov, D.C. Smith, J.M. Taube, J.M. Wigginton, G.D. Kollia, A. Gupta, D.M. Pardoll, J.A. Sosman, F.S. Hodi. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Journal of Clinical Oncology 32 (2014) 1020-1030. https://doi.org/10.1200/JCO.2013.53.0105.

M.A. Tran, R. Gowda, A. Sharma, E.-J. Park, J. Adair, M. Kester, N.B. Smith, G.P. Robertson. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Research 68 (2008) 7638-7649. https://doi.org/10.1158/0008-5472.CAN-07-6614.

S. Dasari, C.G. Yedjou, R.T. Brodell, A.R. Cruse, P.B. Tchounwou, Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer. Nanotechnology Reviews 9 (2020) 1500-1521. https://doi.org/10.1515/ntrev-2020-0117.

J. Zhao, N. Gao, J. Xu, X. Zhu, G. Ling, P. Zhang. Novel strategies in melanoma treatment using silver nanoparticles. Cancer Letters 561 (2023) 216148. https://doi.org/10.1016/j.canlet.2023.216148.

D. Kim, R. Amatya, S. Hwang, S. Lee, K.A. Min, M.C. Shin. BSA-silver nanoparticles: a potential multimodal therapeutics for conventional and photothermal treatment of skin cancer. Pharmaceutics 13 (2021) 575. https://doi.org/10.3390/pharmaceutics13040575.

T. Park, S. Lee, R. Amatya, H. Cheong, C. Moon, H.D. Kwak, K.A. Min, M.C. Shin. ICG-loaded PEGylated BSA-silver nanoparticles for effective photothermal cancer therapy. International Journal of Nanomedicine 15 (2020) 5459-5471. https://doi.org/10.2147/IJN.S255874.

J.M. Kasprzak, Y.G. Xu. Diagnosis and management of lentigo maligna: a review. Drugs Context 4 (2015) 212281. https://doi.org/10.7573/2Fdic.212281.

R. Parhi. Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases. Journal of Drug Delivery Science and Technology 84 (2023) 104395. https://doi.org/10.1016/j.jddst.2023.104395.

X. Li, Z. Zhao, M. Zhang, G. Ling, P. Zhang, Research progress of microneedles in the treatment of melanoma. Journal of Controlled Release 348 (2022) 631-647. https://doi.org/10.1016/j.jconrel.2022.06.021.

L. Bomar, A. Senithilnathan, C. Ahn. Systemic therapies for advanced melanoma. Dermatologic Clinics 37 (2019) 409-423. https://doi.org/10.1016/j.det.2019.05.001.

C.V. Pecot, G.A. Calin, R.L. Coleman, G. Lopez-Berestein, A.K. Sood, RNA interference in the clinic: challenges and future directions. Nature Reviews Cancer 11 (2011) 59-67. https://doi.org/10.1038/nrc2966.

Z. Khorsandi, M. Borjian-Boroujeni, R. Yekani, R.S. Varma. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. Journal of Drug Delivery Science and Technology 66 (2021) 102847. https://doi.org/10.1016/j.jddst.2021.102847.

W. Gong, T. Zhang, M. Che, Y. Wang, C. He, L. Liu, Z. Lv, C. Xiao, H. Wang, S. Zhang. Recent advances in nanomaterials for the treatment of spinal cord injury. Materials Today Bio 18 (2023) 100524. https://doi.org/10.1016/j.mtbio.2022.100524.

M.M. El-Kady, I. Ansari, C. Arora, N. Rai, S. Soni, D.K. Verma, P. Singh, A. El Din Mahmoud. Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. Journal of Molecular Liquids 370 (2023) 121046. https://doi.org/10.1016/j.molliq.2022.121046.

J. Seaberg, J.R. Clegg, R. Bhattacharya, P. Mukherjee. Self-therapeutic nanomaterials: Applications in biology and medicine. Materials Today 62 (2023) 190-224. https://doi.org/10.1016/j.mattod.2022.11.007.

M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2 (2008) 889-896. https://doi.org/10.1021/nn800072t.

S. Hassan, G. Prakash, A.B. Ozturk, S. Saghazadeh, Md.F. Sohail, J. Seo, M.R. Dokmeci, Y.S. Zhang, A. Khademhosseini. Evolution and clinical translation of drug delivery nanomaterials. Nano Today 15 (2017) 91-106. https://doi.org/10.1016/j.nantod.2017.06.008.

M. Faraday. X. The Bakerian Lecture-experimental relations of gold (and other metals) to light, Philosophical Transactions. Royal Society, London, 147 (1997) 145-181. https://doi.org/10.1098/rstl.1857.0011.

A.S. Thakor, J. Jokerst, C. Zavaleta, T.F. Massoud, S.S. Gambhir. Gold nanoparticles: a revival in precious metal administration to patients. Nano Letters 11 (2011) 4029-4036. https://doi.org/10.1021/nl202559p.

Y. Qu, S. Lian, W. Shen, Z. Li, J. Yang, H. Zhang. Rod-shaped gold nanoparticles biosynthesized using Pb2+-induced fungus Aspergillus sp.WLAu. Bioprocess and Biosystems Engineering 43 (2020) 123-131. https://doi.org/10.1007/s00449-019-02210-w.

E.C. Dreaden, L.A. Austin, M.A. Mackey, M.A. El-Sayed. Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery. 3 (2012) 457-478. https://doi.org/10.4155/tde.12.21.

Y. Jeong, G. Kim, S. Jeong, B. Lee, S. Kim, W.-G. Koh, K. Lee. Cancer selective turn-on fluorescence imaging using a biopolymeric nanocarrier. Biomacromolecules 20(Span 80) (2019) 1068-1076. https://doi.org/10.1021/acs.biomac.8b01690.

S.K. Vemuri, R.R. Banala, S. Mukherjee, P. Uppula, G.P.V. Subbaiah, A.V.G. Reddy, T. Malarvilli. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: synthesis, biological evaluation, molecular modelling studies. Material Science and Engineering C 99 (2019) 417-429. https://doi.org/10.1016/j.msec.2019.01.123.

K. Vyas, M. Rathod, M.M. Patel. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. Nanomedicine: Nanotechnology, Biology, and Medicine 49 (2023) 102662. https://doi.org/10.1016/j.nano.2023.102662.

A. Latorre, A. Latorre, M. Castellanos, N. Lafuente-Gómez, C.R. Diaz, A. Crespo-Barreda, M. Lecea, M. Cordani, P. Martín-Duque, Á. Somoza. Albumin-based nanostructures for uveal melanoma treatment. Nanomedicine: Nanotechnology, Biology, and Medicine 35 (2021) 102391. https://doi.org/10.1016/j.nano.2021.102391.

L.K. Caesar, N.B. Cech. A Review of the Medicinal Uses and Pharmacology of Ashitaba. Planta Medica 82 (2016) 1236-1245. https://doi.org/10.1055/s-0042-110496.

F. Wu, J. Zhu, G. Li, J. Wang, V.P. Veeraraghavan, S.K. Mohan, Q. Zhan. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artificial Cells, Nanomedicine, and Biotechnology 47 (2019) 3297-3305. https://doi.org/10.1080/21691401.2019.1647224.

N. Zahraie, G. Perota, R. Dehdari Vais, N. Sattarahmady. Simultaneous chemotherapy/sonodynamic therapy of the melanoma cancer cells using a gold-paclitaxel nanostructure. Photodiagnosis and Photodynamic Therapy 39 (2022) 102991. https://doi.org/10.1016/j.pdpdt.2022.102991.

L. Brochez, A. Meireson, I. Chevolet, N. Sundahl, P. Ost, V. Kruse. Challenging PD-L1 expressing cytotoxic T cells as a predictor for response to immunotherapy in melanoma. Nature Communications 9 (2018) 2921. https://doi.org/10.1038/s41467-018-05047-1.

A. Banstola, K. Poudel, F. Emami, S.K. Ku, J.-H. Jeong, J.O. Kim, S. Yook. Localized therapy using anti-PD-L1 anchored and NIR-responsive hollow gold nanoshell (HGNS) loaded with doxorubicin (DOX) for the treatment of locally advanced melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine 33 (2021) 102349. https://doi.org/10.1016/j.nano.2020.102349.

G. Farahavar, S.S. Abolmaali, F. Nejatollahi, A. Safaie, S. Javanmardi, H.K. Zadeh, R. Yousefi, H. Nadgaran, S. Mohammadi-Samani, A.Md. Tamaddon, S. Ahadian. Single-chain antibody-decorated Au nanocages@liposomal layer nanoprobes for targeted SERS imaging and remote-controlled photothermal therapy of melanoma cancer cells. Materials Science & Engineering C 124 (2021) 112086. https://doi.org/10.1016/j.msec.2021.112086.

J. Lopes, J.M.P. Coelho, P.M.C. Vieira, A.S. Viana, M.M. Gaspar, C. Reis. Preliminary Assays towards Melanoma Cells Using Phototherapy with Gold-Based Nanomaterials. Nanomaterial 10 (2020) 1536. https://doi.org/10.3390/nano10081536.

A. Shanei, H. Akbari-Zadeh, N. Attaran, M.R. Salamat, M. Baradaran-Ghahfarokhi. Effect of targeted gold nanoparticles size on acoustic cavitation: An in vitro study on melanoma cells. Ultrasonics 102 (2020) 106061-106071. https://doi.org/10.1016/j.ultras.2019.106061.

G. Perota, N. Zahraie, R. Dehdari Vais, M.H. Zare, N. Sattarahmady. Au/TiO2 nanocomposite as a triple-sensitizer for 808 and 650 nm phototherapy and sonotherapy: Synergistic therapy of melanoma cancer in vitro. Journal of Drug Delivery Science and Technology 76 (2022) 103787. https://doi.org/10.1016/j.jddst.2022.103787.

E. Soratijahromia, S. Mohammadia, R. Dehdari Vais, N. Azarpira, N. Sattarahmady. Photothermal/sonodynamic therapy of melanoma tumor by a gold/manganese dioxide nanocomposite: In vitro and in vivo studies. Photodiagnosis and Photodynamic Therapy 31 (2020) 101846. https://doi.org/10.1016/j.pdpdt.2020.101846.

R.P. Singh, C.R.K. Reddy. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiology Ecology 88 (2014) 213-230. https://doi.org/10.1111/1574-6941.12297.

D. Acharya, S. Satapathy, P. Somu, U.K. Parida, G. Mishra. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biological Trace Element Research 199 (2021) 1812-1822. https://doi.org/10.1007/s12011-020-02304-7.

W.I. Abdel-fattah, G.W. Ali. On the anti-cancer activities of silver nanoparticles. Journal of Applied Biotechnology & Bioengineering 5 (2018) 3-7. https://doi.org/10.15406/jabb.2018.05.00116.

A. Sharma, A.K. Goyal, G. Rath. Recent advances in metal nanoparticles in cancer therapy. Journal of Drug Target 26 (2018) 617-632. https://doi.org/10.1080/1061186X.2017.1400553.

M. Shahriari, M.A. Sedigh, Y. Mahdavian, S. Mahdigholizad, M. Pirhayati, B. Karmakar, H. Veisi. In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer. International Journal of Biological Macromolecules 172 (2021) 55-65. https://doi.org/10.1016/j.ijbiomac.2021.01.037.

M.M. Zangeneh, S. Bovandi, S. Gharehyakheh, A. Zangeneh, P. Irani. Green synthesis and chemical characterization of silver nanoparticles obtained using allium saralicum aqueous extract and survey of in vitro antioxidant, cytotoxic, antibacterial and antifungal properties. Applied Organometallic Chemistry 33 (2019) e4961. https://doi.org/10.1002/aoc.4961.

R. Manikandan, R. Anjali, M. Beulaja, N.M. Prabhu, A. Koodalingam, G. Saiprasad, P. Chitra, M. Arumugam. Synthesis, characterization, antiproliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochemistry 79 (2019) 135-141. https://doi.org/10.1016/j.procbio.2019.01.013.

Z. Zhao, L. Fang, D. Lv, L. Chen, B. Zhang, D. Wu. Design and synthesis of Ag NPs/chitosan-starch nano-biocomposite as a modern anti-human malignant melanoma drug. International Journal of Biological Macromolecules 236 (2023) 123823. https://doi.org/10.1016/j.ijbiomac.2023.123823.

P.M. Patil, N. Poddar, N. Parihar, S. Sen, P. Mohapatra, U.S. Murty, D.B. Pemmaraju. Optoresponsive Pheophorbide-Silver based organometallic nanomaterials for high efficacy multimodal theranostics in Melanoma. Chemical Engineering Journal 470 (2023) 144110. https://doi.org/10.1016/j.cej.2023.144110.

U. Bunyatova, M. Ben Hammouda, J. Zhang. Novel light-driven functional AgNPs induce cancer death at extra low concentrations. Scientific Report 11 (2021) 13258. https://doi.org/10.1038/s41598-021-92689-9.

N.S.V. Capanema, I.C. Carvalho, A.A.P. Mansur, S.M. Carvalho, A.P. Lage, H.S. Mansur. Hybrid Hydrogel Composed of Carboxymethylcellulose–Silver Nanoparticles–Doxorubicin for Anticancer and Antibacterial Therapies against Melanoma Skin Cancer Cells. ACS Applied Nano Materials 2 (2019) 7393-7408. https://doi.org/10.1021/acsanm.9b01924.

L.M. Valenzuela-Salas, N.G. Girón-Vázquez, J.C. García-Ramos, O. Torres-Bugarín, C. Gómez, A. Pestryakov, L.J. Villarreal-Gómez, Y. Toledano-Magaña, N. Bogdanchikova. Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models. Oxidative Medicine and Cellular Longevity 2019 (2019) 4528241. https://doi.org/10.1155/2019/4528241.

E.G. Halevas, A.A. Pantazaki. Copper nanoparticles as therapeutic anticancer agents. Nanomedicine and Nanotechnology Journal 2 (2018) 119. https://ikee.lib.auth.gr/record/315077/files/Halevas%20Pantazaki.

B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan, Z. Li, Y. Kong, Y. Sang, H. Liu, W. Bu, L. Li. Self-Assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society 141 (2019) 849-857. https://doi.org/10.1021/jacs.8b08714.

Y. Wang, W. Wu, J. Liu, P.N. Manghnani, F. Hu, D. Ma, C. Teh, B.o. Wang, B. Liu. Cancer-cell-activated photodynamic therapy assisted by Cu(II)-based metalorganic framework. ACS Nano 13 (2019) 6879-6890. https://doi.org/10.1021/acsnano.9b01665.

L.-S. Lin, T. Huang, J. Song, X.-Y. Ou, Z. Wang, H. Deng, R. Tian, Y. Liu, J.-F. Wang, Y. Liu, G. Yu, Z. Zhou, S. Wang, G. Niu, H.-H. Yang, X. Chen. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. Journal of the American Chemical Society 141 (2019) 9937-9945. https://doi.org/10.1021/jacs.9b03457.

H. Song, Q. Xu, Y. Zhu, S. Zhu, H. Tang, Y. Wang, H. Ren, P. Zhao, Z. Qi, S. Zhao. Serum adsorption, cellular internalization and consequent impact of cuprous oxide nanoparticles on uveal melanoma cells: implications for cancer therapy. Nanomedicine 10 (2015) 3547-3562. https://doi.org/10.2217/nnm.15.178.

M. Huo, L. Wang, Y. Wang, Y. Chen, J. Shi, Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano 13 (2019) 2643-2653. https://doi.org/10.1021/acsnano.9b00457.

B. Yang, Y. Chen, J. Shi, Nanocatalytic Medicine. Advanced Materials 31 (2019) e1901778. https://doi.org/10.1002/adma.201901778.

T. Fang, S. Ma, Y. Wei, J. Yang, J. Zhang, Q. Shen. Catalytic immunotherapy-photothermal therapy combination for melanoma by ferroptosis-activating vaccine based on artificial nanoenzyme. Materials Today Chemistry 27 (2023) 101308. https://doi.org/10.1016/j.mtchem.2022.101308.

Y. Liu, C.-F. Xu, S. Iqbal, X.-Z. Yang, J. Wang. Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Advanced Drug Delivery Reviews 115 (2017) 98-114. https://doi.org/10.1016/j.addr.2017.03.004.

J. Chen, Y. Zhu, S. Kaskel. Porphyrin-based metal-organic frameworks for biomedical applications. Angewandte Chemie International Edition 60 (2021) 5010-5035. https://doi.org/10.1002/anie.201909880.

S. Mukherjee, R. Kotcherlakota, S. Haque, S. Haque, D. Bhattacharya, J.M. Kumar, S. Chakravarty, C.R. Patra. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Material Sciences & Engineering C 108 (2020) 110375. https://doi.org/10.1016/j.msec.2019.110375.

W.L. Xue, X.N. Zhao, D.W. Gao, F.M. Gao, Z. Wang, Y.P. Liu, X. Zhang, L. Luoa, Z. Liua. Octreotide acetate-templated self-assembly Pt nanoparticles and their anti-tumor efficacy. RSC Advances 5 (2015) 42186-42192. https://doi.org/10.1039/C5RA02921J.

P.H. Ling, J.P. Lei, L. Jia, H.X. Ju. Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity. Chemical Communications 52 (2016) 1226-1229. https://doi.org/10.1039/C5CC08418K.

S. Dasari, P.B. Tchounwo. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology 740 (2014) 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025.

T.C. Johnstone, G.Y. Park, S.J. Lippard. Understanding and improving platinum anticancer drugs-phenanthriplatin. Anticancer Research 34 (2014) 471-476. https://pubmed.ncbi.nlm.nih.gov/24403503/.

D. Pedone, M. Moglianetti, G. Bardi, P.P. Pompa, E. De Luca. Platinum nanoparticles in nanobiomedicine. Chemical Society Reviews journal 46 (2017) 53-69. https://doi.org/10.1039/c7cs00152e.

F. Salehi, F. Daneshvar, M. Karimi, R.D. Vais, M.A. Mosleh-Shirazi, N. Sattarahmady. Enhanced melanoma cell-killing by combined phototherapy/radiotherapy using a mesoporous platinum nanostructure. Photodiagnosis and Photodynamic Therapy 28 (2019) 300-307. https://doi.org/10.1016/j.pdpdt.2019.10.001.

I.I. Slowing, B.G. Trewyn, S. Giri, V.S.Y. Lin. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials 17 (2007) 1225-1236. https://doi.org/10.1002/adfm.200601191.

N.P. Truong, M.R. Whittaker, C.W. Mak, T.P. Davis. The importance of nanoparticle shape in cancer drug delivery. Expert Opinion on Drug Delivery 12 (2015) 129-142. https://doi.org/10.1517/17425247.2014.950564.

M. Jeyaraj, S. Gurunathan, M. Qasim, M. Kang, J. Kim. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 9 (2019) 2019. https://doi.org/10.3390/nano9121719.

S. Yang, L. Chen, X. Zhou, P. Sun, L. Fu, Y. You, M. Xu, Z. You, G. Kai, C. He. Tumor-targeted biodegradable multifunctional nanoparticles for cancer theranostics. Chemical Engineering Journal 378 (2019) 122171. https://doi.org/10.1016/j.cej.2019.122171.

M. Pourmadadi, P. Abbasi, Md.M. Eshaghi, A. Bakhshi, A.-L.E. Manicum, A. Rahdar, S. Pandey, S. Jadoun, A.M. Díez-Pascual. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. Journal of Drug Delivery Science and Technology 78 (2022) 103982. https://doi.org/10.1016/j.jddst.2022.103982.

M. Ghazaeian, K. Khorsandi, R. Hosseinzadeh, A. Naderi, H. Abrahamse. Curcumin–silica nanocomplex preparation, hemoglobin and DNA interaction and photocytotoxicity against melanoma cancer cells. Journal of Biomolecular Structure and Dynamics 39 (2021) 6606-6616. https://doi.org/10.1080/07391102.2020.1802342.

N.M. Idris, M.K. Gnanasammandhan, J. Zhang, P.C. Ho, R. Mahendran, Y. Zhang. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine 18 (2012) 1580-1585. https://doi.org/10.1038/nm.2933.

S.E. Kim, L. Zhang, K. Ma, M. Riegman, F. Chen, I. Ingold, M. Conrad, M.Z. Turker, M. Gao, X. Jiang, S. Monette, M. Pauliah, M. Gonen, P. Zanzonico, T. Quinn, U. Wiesner, M.S. Bradbury, M. Overholtzer. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nature Nanotechnology 11 (2016) 977-985. https://doi.org/0.1038/nnano.2016.164.

H. Wang, R. Zhao, Y. Li, H. Liu, F. Li, Y. Zhao, G. Nie. Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomedicine: Nanotechnology, Biology and Medicine 12 (2016) 439-448. https://doi.org/10.1016/j.nano.2015.11.013.

Z. Zhang, X. Zhang, S. Zhao, W. Feng, H. Huang, L. Ding, Y. Chen, B. Chen. Engineering 2D silicene-based core/shell nanomedicine for GSDME-induced synergistic pyroptosis and photonic hyperthermia of melanoma carcinoma. Chemical Engineering Journal 454 (2023) 140175. https://doi.org/10.1016/j.cej.2022.140175.

S. Sapino, E. Ugazio, L. Gastaldi, I. Miletto, G. Berlier, D. Zonari, S. Oliaro-Bosso. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies. European Journal of Pharmaceutics and Biopharmaceutics 89 (2015) 116-125. https://doi.org/10.1016/j.ejpb.2014.11.022.

R.J. Gurr. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213 (2005) 66-73. https://doi.org/10.1016/j.tox.2005.05.007.

S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, L. Tayebi. Biomedical applications of TiO2 nanostructures: recent advances. International Journal of Nanomedicine 15 (2020) 3447-3470. https://doi.org/10.2147/IJN.S249441.

A. Meng, L. Zhang, B. Cheng, J. Yu. Dual Cocatalysts in TiO2 Photocatalysis. Advanced Materials 31 (2019) 1807660. https://doi.org/10.1002/adma.201807660.

C. Zarzzeka, J. Goldoni, F. Marafon, W.G. Sganzerla, T. Forster-Carneiro, M.D. Bagatini, L. Maria, S. Colpini. Use of titanium dioxide nanoparticles for cancer treatment: A comprehensive review and bibliometric analysis. Biocatalysis and Agricultural Biotechnology 50 (2023) 102710. https://doi.org/10.1016/j.bcab.2023.102710.

S.S. Deshpande, D.K. Veeragoni, L. Kongari, J. Mamilla, S. Misra. Synthesis of biocompatible chitosan coated TiO2-curcumin nanocomposites shows potent anticancer activity towards melanoma cancer cells. Journal of Drug Delivery Science and Technology 85 (2023) 104592. https://doi.org/10.1016/j.jddst.2023.104592.

K.J. Widder, P.A. Marino, R.M. Morris, D.P. Howard, G.A. Poore, A.E. Senyei. Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: Ultrastructural evaluation of microsphere disposition. European Journal of Cancer and Clinical Oncology 19 (1983) 141-147. https://doi.org/10.1016/0277-5379(83)90409-1.

P.B. Santhosh, N.P. Ulrih. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Letters 336 (2013) 8-17. https://doi:10.1016/j.canlet.2013.04.032.

C. Plank. Nanomedicine: silence the target. Nature Nanotechnology 4 (2009) 544-545. https://doi.org/10.1038/nnano.2009.251.

M. Rajan, P. Krishnan, P. Pradeepkumar, M. Jeyanthinath, M. Jeyaraj, M.P. Ling, P. Arulselvan, A. Higuchi, M.A. Munusamy, R. Arumugam, G. Benelli, K. Muruganmo, S.S. Kumar. Magneto-chemotherapy for cervical cancer treatment with camptothecin loaded Fe3O4 functionalized β-cyclodextrin nanovehicle. RSC Advances 7 (2017) 46271-46285, https://doi.org/10.1039/c7ra06615e.

W. Zheng, Q. Zhou, C. Yuan. Nanoparticles for Oral cancer diagnosis and therapy. Bioinorganic Chemistry and Applications 2021 (2021) 1-14. https://doi.org/10.1155/2021/9977131.

H. Geng, Q. Dai, H. Sun, L. Zhuang, A. Song, F. Caruso, J. Hao, J. Cui. Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Applied Bio Materials 3 (2020) 1258-1266. https://doi.org/10.1021/acsabm.9b01138.

B. Zhang, R. Yao, C. Hu, M.F. Maitz, H. Wu, K. Liu, L. Yang, R. Luo, Y. Wang. Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release. Biomaterials 269 (2020) 120418. https://doi:10.1016/j.biomaterials.2020.120418.

J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J.R. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C.E. Hagemeyer, F. Caruso. Engineering multifunctional capsules through the assembly of metalphenolic networks”. Angewandte Chemie International Edition 53 (2014) 5546-5551. https://doi.org/10.1002/anie.201311136.

M. Mu, X. Liang, D. Chuan, S. Zhao, W. Yu, R. Fan, A. Tong, N. Zhao, B. Han, G. Guo. Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy. Carbohydrate Polymers 264 (2021) 118000. https://doi.org/10.1016/j.carbpol.2021.118000.

D. Chuan, H. Hou, Y. Wang, M. Mu, J. Li, Y. Ren, N. Zhao, B. Han, H. Chen, G. Guo. Multifunctional metal-polyphenol nanocomposite for melanoma targeted photo/chemodynamic synergistic therapy. Journal of Materials Science & Technology 152 (2023) 159-168. https://doi.org/10.1016/j.jmst.2022.12.039.

P. Li, Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan. NIR- and pH-responsive injectable nanocomposite alginate-graft-dopamine hydrogel for melanoma suppression and wound repair. Carbohydrate Polymers 314 (2023) 120899. https://doi.org/10.1016/j.carbpol.2023.120899.

S. Iijima. Helical microtubules of graphitic carbon. Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0.

Z. Liu, S. Tabakman, K. Welsher, H. Dai. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Research 2 (2009) 85-120. https://doi.org/10.1007/s12274-009-9009-8.

S. Peretz, O. Regev. Carbon nanotubes as nanocarriers in medicine. Current Opinion in Colloid & Interface Science 17 (2012) 360-368. https://doi.org/10.1016/j.cocis.2012.09.001.

S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin. The biocompatibility of carbon nanotubes. Carbon 44 (2006) 1034-1047. https://doi.org/10.1016/j.carbon.2005.10.011.

R. Parhi. Development and in Vitro evaluation of etoricoxib loaded transdermal film containing MWCNT. Journal of Advanced Applied Scientific Research 4 (2022) 1-8. https://doi.org/10.46947/joaasr442022439.

G. Cirillo, S. Hampel, U.G. Spizzirri, O.I. Parisi, N. Picci, F. Iemma. Carbon nanotubes hybrid hydrogels in drug delivery: A perspective review. BioMed Research International 2014 (2014) 825017. https://doi.org/10.1155/2014/825017.

J. Saleem, L. Wang, C. Chen. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Advanced Healthcare Materials 20 (2018) 800525. https://doi.org/10.1002/adhm.201800525.

P. Chaudhuri, S. Soni, S. Sengupta. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 21 (2010) 025100-025102. https://doi.org/10.1088/0957-4484/21/2/025102.

N. Behzadpour, A. Ranjbar, N. Azarpira, N. Sattarahmady. Development of a Composite of Polypyrrole-Coated Carbon Nanotubes as a Sonosensitizer for Treatment of Melanoma Cancer Under Multi-Step Ultrasound Irradiation. Ultrasound in Medicine & Biology 46 (2020) 2322-2334. https://doi.org/10.1016/j.ultrasmedbio.2020.05.003.

J. Yao, Y. Sun, M. Yang, Y. Duan. Chemistry, physics and biology of graphene based nanomaterials: new horizons for sensing, imaging and medicine. Journal of Materials Chemistry 22 (2012) 14313. https://doi.org/10.1039/C2JM31632C.

J. Liua, J. Donga, T. Zhangb, Q. Peng. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of Controlled Release 286 (2018) 64-73. https://doi.org/10.1016/j.jconrel.2018.07.034.

J. Lin, X. Chen, P. Huang. Graphene-based nanomaterials for bioimaging. Advanced Drug Delivery Reviews 105 (2016) 242-254. https://doi.org/10.1016/j.addr.2016.05.013.

W.S. Hummers, R.E. Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society 80 (1958) 1339. https://doi.org/10.1021/ja01539a017.

S. You, J. Yu, B. Sundqvist, A.V. Talyzin. Solvation of graphite oxide in water–methanol binary polar solvents. Physica Status Solidi B 249 (2012) 2568-2571. https://doi.org/10.1002/pssb.201200059.

S. Hermanová, M. Zarevúcká, D. Bouša, M. Pumera, Z. Sofer, Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 7 (2015) 5852-5858. https://doi.org/10.1039/C5NR00438A.

C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, A. Pluen. Graphene in therapeutics delivery: problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics 104 (2016) 235-250. https://doi.org/10.1016/j.ejpb.2016.04.015.

Y. Liu, H. Zhong, Y. Qin, Y. Zhang, X. Liu, T. Zhang. Non-covalent hydrophilization of reduced graphene oxide used as a paclitaxel vehicle. RSC Advances 6 (2016) 30184-30193. https://doi.org/10.1039/C6RA04349F.

H. Chang, H. Wu. Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials 23 (2013) 1984-1997. https://doi.org/10.1002/adfm.201202460.

L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 195 (2014) 145-154. https://doi.org/10.1016/j.elspec.2014.07.003.

M. Mokhtar, S.A.E. Enein, M.Y. Hassaan, M.S. Morsy, M.H. Khalil. Thermally reduced graphene oxide: synthesis, structural and electrical properties. International Journal of Nanoparticles and Nanotechnology 3 (2017) 008. https://doi.org/10.35840/2631-5084/5508.

S. Nazir, Md.U.A. Khan, W.S. Al-Arjan, S.I.A. Razak, A. Javed, Md.R.A. Kadir. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arabian Journal of Chemistry 14 (2021) 103120. https://doi.org/10.1016/j.arabjc.2021.103120.

X. Zhan, W. Teng, K. Sun, J. He, J. Yang, J. Tian, X. Huang, L. Zhou, C. Zhou. CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma. Materials Science & Engineering C 123 (2021) 112014. https://doi.org/10.1016/j.msec.2021.112014.

M. Bamburowicz-Klimkowska, M. Malecki, M. Bystrzejewski, A. Kasprzak, I.P. Grudzinski. Graphene-encapsulated iron nanoparticles as a non-viral vector for gene delivery into melanoma cells. Biochemical and Biophysical Research Communications 652 (2023) 84-87. https://doi.org/10.1016/j.bbrc.2023.02.042.

Q. Guo, L. Li, G. Guo, R. Liu, Y. Einaga, J Zhi. Nanodiamonds Inhibit Cancer Cell Migration by Strengthening Cell Adhesion: Implications for Cancer Treatment. ACS Applied Materials & Interfaces 13 (2021) 9620-9629. https://doi.org/10.1021/acsami.0c21332.

J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews 42 (2013) 1147-1235. https://doi.org/10.1039/c2cs35265f.

N. Deirram, C. Zhang, S.S. Kermaniyan, A.P.R. Johnston, G.K. Such. pH-responsive polymer nanoparticles for drug delivery. Macromolecular Rapid Communications 40 (2019) 1800917. https://doi.org/10.1002/marc.201800917.

Y. Lee, D. Thompson. Stimuli-responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 9 (2017) e1450. https://doi.org/10.1002/wnan.1450.

C.-M.J. Hu, R.H. Fang, B.T. Luk, L. Zhang. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale 6 (2014) 65-75. https://doi.org/10.1039/C3NR05444F.

S. Kaur, C. Prasad, B. Balakrishnan, R. Banerjee. Trigger responsive polymeric nanocarriers for cancer therapy. Biomaterial Science 3 (2015) 955-987. https://doi.org/10.1039/c5bm00002e.

V.K. Patel, R. Srivastava, A. Sharma, A.K. Srivastava, S. Singh, A.K. Srivastava, P.L. Kashyap, H. Chakdar, K. Pandiyan, A. Kalra, A.K. Saxena. Halotolerant Exiguobacterium profundum PHM11 tolerate salinity by accumulating L-proline and finetuning gene expression profiles of related metabolic pathways. Frontiers in Microbiology 9 (2018) 1-14. https://doi.org/10.3389/fmicb.2018.00423.

N.H. Abd Ellah, S.A. Abouelmagd. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opinion on Drug Delivery 14 (2017) 201-214. https://doi.org/10.1080/17425247.2016.1213238.

F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat. PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release 161 (2012) 505-522. https://doi.org/10.1016/j.jconrel.2012.01.043.

M. Cagel, E. Grotz, E. Bernabeu, M.A. Moretton, D.A. Chiappetta, Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discovery Today 22 (2017) 270-281. https://doi.org/10.1016/j.drudis.2016.11.005.

A. Zielinska, F. Carreir, A.M. Oliveira, A. Neves, B. Pires, D.N. Venkatesh, A. Durazzo, M. Lucarini, P. Eder, A.M. Silva, A. Santini, E.B. Souto. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25 (2020). https://doi.org/10.3390/molecules25163731.

A. Mehandole, N. Walke, S. Mahajan, M. Aalhate, I. Maji, U. Gupta, N.K. Mehra, P.K. Singh. Core-shell type lipidic and polymeric nanocapsules: the transformative multifaceted delivery systems. AAPS PharmSciTech 24 (2023) 50. https://doi.org/10.1208/s12249-023-02504-z.

A.R. Pohlmann, C.B. Detoni, K. Paese, K. Coradini, R.C. Beck, S.S. Guterres, Polymeric nanocapsules for topical delivery, in N. Dragicevic, H. Maibach (Eds.)., Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers, Springer, Berlin, Heidelberg. 2016, p. 201-221. https://doi.org/10.1007/978-3-662-47862-2_13.

R. Pan, Y. Zeng, G. Liu, Y. Wei, Y. Xu, L. Tao, Curcumin-polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polymer Chemistry 11 (2020) 1321-1326. https://doi.org/10.1039/C9PY01596E.

R. Scopel, M.A. Falcão, A.R. Cappellari, F.B. Morrone, S.S. Guterres, E. Cassel, A.M. Kasko, R.M.F. Vargas. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. International Journal of Polymeric Materials and Polymeric Biomaterials 71 (2022) 127-138. https://doi.org/10.1080/00914037.2020.1809406.

M. Song, B. Zhu, S. Qiu, J. Tian, J. Li, D. Chen, C. Liu. Codelivery of afuresertib and celecoxib by IL4RPep-1-targeting nanoparticles for effective treatment against melanoma. Applied Materials Today 33 (2023) 101868. https://doi.org/10.1016/j.apmt.2023.101868.

B. Mishra, Bhavesh B. Patel, Sanjay Tiwari. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology Biology and Medicine 6 (2010) 9-24. https://doi.org/10.1016/j.nano.2009.04.008.

S.R. Mudshinge, A.B. Deore, S. Patil, C.M. Bhalgat. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharmaceutical Journal 19 (2011) 129-141. https://doi.org/10.1016/j.jsps.2011.04.001.

H.J. Hsu, J. Bugno, S.-R. Lee, S. Hong. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 9 (2017). https://doi.org/10.1002/wnan.1409.

G. Jiang, R. Li, J. Tang, Y. Ma, X. Hou, C. Yang, W. Guo, Y. Xin, Y. Liu. Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells. Oncology Reports 37 (2017) 995-1001. https://doi.org/10.3892/or.2016.5342.

C.-C. Cheng, F.-C. Chang, W.-Y. Kao, S.-M. Hwang, L.-C. Liao, Y.-J. Chang, M.-C. Liang, J.-K. Chen, D.-J. Lee. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation. Acta Biomaterialia 33 (2016) 194-202. https://doi.org/10.1016/j.actbio.2016.01.018.

S. Bhat, V. Guddadar. Targeted therapy in chronic diseases treatment by nanomaterial based drug delivery. International Journal of Advanced Research in Science, Communication and Technology 2 (2021) 141-145, https://doi.org/10.48175/ijarsct-799.

K. Tokarska, Ł. Lamch, B. Piechota, K. Żukowski, M. Chudy, K.A. Wilk, Z. Brzózka. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. Journal of Photochemistry & Photobiology, B: Biology 211 (2020) 111981. https://doi.org/10.1016/j.jphotobiol.2020.111981.

H.-Q. Wu, C. Wang. Biodegradable Smart Nanogels: A New Platform for Targeting Drug Delivery and Biomedical Diagnostics. Langmuir 32 (2016) 6211-6225. https://doi.org/10.1021/acs.langmuir.6b00842.

W. Chen, Y. Hou, Z. Tu, L. Gao, R. Haag. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. Journal of Controlled Release 16 (2016) 31116. https://doi.org/10.1016/j.jconrel.2016.10.032.

P.H. Tran, W. Duan, B.-J. Lee, T.T. Tran. Nanogels for skin cancer therapy via transdermal delivery: current designs. Current Drug Metabolism 20 (2019) 575-582, https://doi.org/10.2174/1389200220666190618100030.

J. Kousalov´a, T. Etrych. Polymeric nanogels as drug delivery systems. Physiological Research 67 (2018). https://doi.org/10.33549/physiolres.933979.

W. Zhao, J. Hu, W. Gao. Glucose Oxidase-Polymer Nanogels for Synergistic Cancer-Starving and Oxidation T

Comments (0)

No login
gif