C.V. Dang, E.P. Reddy, K.M. Shokat, L. Soucek. Drugging the ‘undruggable’ cancer targets. Nature Reviews Cancer 17 (2017) 502-508. https://doi.org/10.1038/nrc.2017.36.
M.J. Blanco, K.M. Gardinier. New Chemical Modalities and Strategic Thinking in Early Drug Discovery. ACS Medicinal Chemistry Letters 11 (2020) 228-231. https://doi.org/10.1021/acsmedchemlett.9b00582.
M.J. Blanco, K.M. Gardinier, M.N. Namchuk. Advancing New Chemical Modalities into Clinical Studies. ACS Medicinal Chemistry Letters 13 (2022) 1691-1698. https://doi.org/10.1021/acsmedchemlett.2c00375.
A.C. Lai, C.M. Crews. Induced protein degradation: An emerging drug discovery paradigm. Nature Reviews Drug Discovery 16 (2017) 101-114. https://doi.org/10.1038/nrd.2016.211.
D. Garcia Jimenez, V. Poongavanam, J. Kihlberg. Macrocycles in Drug Discovery─Learning from the Past for the Future. Journal of Medicinal Chemistry 66 (2023) 5377-5396. https://doi.org/10.1021/acs.jmedchem.3c00134.
D.S. Nielsen, N.E. Shepherd, W. Xu, A.J. Lucke, M.J. Stoermer, D.P. Fairlie. Orally Absorbed Cyclic Peptides. Chemical Reviews 117 (2017) 8094-8128. https://doi.org/10.1021/acs.chemrev.6b00838.
A. Seelig. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Frontiers in Oncology 10 (2020). https://doi.org/10.3389/fonc.2020.576559.
M.T. Kim, A. Sedykh, S.K. Chakravarti, R.D. Saiakhov, H. Zhu. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharmaceutical Research 31 (2014) 1002-1014. https://doi.org/10.1007/s11095-013-1222-1.
G. Caron, V. Digiesi, S. Solaro, G. Ermondi. Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discovery Today 25 (2020) 621-627. https://doi.org/10.1016/j.drudis.2020.01.012.
E. Price, M. Weinheimer, A. Rivkin, G. Jenkins, M. Nijsen, P.B. Cox, D. DeGoey. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. Journal of Medicinal Chemistry 67 (2024) 5683-5698. https://doi.org/10.1021/acs.jmedchem.3c02332.
A. Pike, B. Williamson, S. Harlfinger, S. Martin, D.F. McGinnity. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discovery Today 25 (2020) 1793-1800. https://doi.org/10.1016/j.drudis.2020.07.013.
P.A. Carrupt, B. Testa, A. Bechalany, N. El Tayar, P. Descas, D. Perrissoud. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. Journal of Medicinal Chemistry 34 (1991) 1272-1275.
A. Alex, D.S. Millan, M. Perez, F. Wakenhut, G.A. Whitlock. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Medicinal Chemistry Communications 2 (2011) 669. https://doi.org/10.1039/c1md00093d.
M. Vallaro, G. Ermondi, J. Saame, I. Leito, G. Caron. Ionization and lipophilicity in nonpolar media mimicking the cell membrane interior. Bioorganic & Medicinal Chemistry 81 (2023) 117203. https://doi.org/10.1016/j.bmc.2023.117203.
G. Caron, M. Vallaro, G. Ermondi, G.H.G.H. Goetz, Y.A.Y.A. Abramov, L. Philippe, M. Shalaeva. A Fast Chromatographic Method for Estimating Lipophilicity and Ionization in Nonpolar Membrane-Like Environment. Molecular Pharmaceutics 13 (2016) 1100-1110 https://doi.org/10.1021/acs.molpharmaceut.5b00910.
P. Matsson, J. Kihlberg. How Big Is Too Big for Cell Permeability?. Journal of Medicinal Chemistry 60 (2017) 1662-1664. https://doi.org/10.1021/acs.jmedchem.7b00237.
C.R.W. Guimarães, A.M. Mathiowetz, M. Shalaeva, G. Goetz, S. Liras. Use of 3D Properties to Characterize Beyond Rule-of-5 Property Space for Passive Permeation. Journal of Chemical Information and Modeling 52 (2012) 882-890. https://doi.org/10.1021/ci300010y.
M. Rossi Sebastiano, D. Garcia Jimenez, M. Vallaro, G. Caron, G. Ermondi. Refinement of Computational Access to Molecular Physicochemical Properties: From Ro5 to bRo5. Journal of Medicinal Chemistry 65 (2022) 12068-12083. https://doi.org/10.1021/acs.jmedchem.2c00774.
B. Testa, G. Caron, P. Crivori, S. Rey, M. Reist, P.A. Carrupt. Lipophilicity and related molecular properties as determinants of pharmacokinetic behavior. Chimia 54 (2000) 672.
K. Valkó, C. Bevan, D. Reynolds. Chromatographic Hydrophobicity Index by Fast-Gradient RP-HPLC: A High-Throughput Alternative to log P/log D. Analytical Chemistry 69 (1997) 2022-2029. https://doi.org/10.1021/ac961242d.
F. Lombardo, M.Y. Shalaeva, K.A Tupper, F. Gao, M.H. Abraham. ElogPoct: a tool for lipophilicity determination in drug discovery. Journal of Medicinal Chemistry 43 (2000) 2922-2928. http://www.ncbi.nlm.nih.gov/pubmed/11448232.
F. Lombardo, M.Y. Shalaeva, K.A. Tupper, F. Gao. ElogD oct: A Tool for Lipophilicity Determination in Drug Discovery. 2. Basic and Neutral Compounds. Journal of Medicinal Chemistry 44 (2001) 2490-2497.
G. Ermondi, M. Vallaro, G.H. Goetz, M. Shalaeva, G. Caron. Updating the portfolio of physicochemical descriptors related to permeability in the Beyond the Rule of 5 chemical space. European Journal of Pharmaceutical Sciences 146 (2020) 105274. https://doi.org/10.1016/j.ejps.2020.105274.
K. Valko, C.M.M. Du, C. Bevan, D.P.P. Reynolds, M.H.H. Abraham. Rapid method for the estimation of octanol/water partition coefficient (Log Poct) from gradient RP-HPLC retention and a hydrogen bond acidity term (∑α2nH). Current Medicinal Chemistry 8 (2001) 1137-1146. https://doi.org/10.2174/0929867013372643.
G. Caron, M. Vallaro, G. Ermondi. The Block Relevance (BR) analysis to aid medicinal chemists to determine and interpret lipophilicity. Medicinal Chemistry Communications 4 (2013) 1376. https://doi.org/10.1039/c3md00140g.
G. Caron, M. Vallaro, G. Ermondi. The Block Relevance (BR) Analysis Makes the Choice of Methods for Measuring Lipophilicity and Permeability Safer and Speeds Up Drug Candidate Prioritization. Current Pharmaceutical Design 26 (2020) 5662-5667. https://doi.org/10.2174/1381612826666201109111124.
C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, a H. Dantzig, J. Munroe, W.J. Hornback, J.S. Kasher, L. Glunz. IAM chromatography: an in vitro screen for predicting drug membrane permeability. Journal of Medicinal Chemistry 38 (1995) 590-594. https://doi.org/10.1021/jm00004a004.
A. Taillardat-Bertschinger, P.-A. Carrupt, F. Barbato, B. Testa. Immobilized artificial membrane HPLC in drug research. Journal of Medicinal Chemistry 46 (2003) 655-665. https://doi.org/10.1021/jm020265j.
G.H. Goetz, W. Farrell, M. Shalaeva, S. Sciabola, D. Anderson, J. Yan, L. Philippe, M.J. Shapiro. High throughput method for the indirect detection of intramolecular hydrogen bonding. Journal of Medicinal Chemistry 57 (2014) 2920-2929. https://doi.org/10.1021/jm401859b.
G.H. Goetz, L. Philippe, M.J. Shapiro. EPSA: A Novel Supercritical Fluid Chromatography Technique Enabling the Design of Permeable Cyclic Peptides. ACS Medicinal Chemistry Letters 5 (2014) 1167-72. https://doi.org/10.1021/ml500239m.
L. Grumetto, C. Carpentiero, F. Barbato. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: Their role in membrane partition and their relationships with BBB passage data. European Journal of Pharmaceutical Sciences 45 (2012) 685-692. https://doi.org/10.1016/j.ejps.2012.01.008.
G. Ermondi, M. Vallaro, G. Caron. Learning how to use IAM chromatography for predicting permeability. European Journal of Pharmaceutical Sciences 114 (2018) 385-390. https://doi.org/10.1016/j.ejps.2018.01.001.
G.H. Goetz, M. Shalaeva, G. Caron, G. Ermondi, L. Philippe. Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis. Molecular Pharmaceutics 14 (2017) acs.molpharmaceut.6b00724. https://doi.org/10.1021/acs.molpharmaceut.6b00724.
E. Price, M. Weinheimer, A. Rivkin, G. Jenkins, M. Nijsen, P.B. Cox, D. DeGoey. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. Journal of Medicinal Chemistry 67 (2024) 5683-5698. https://doi.org/10.1021/acs.jmedchem.3c02332.
Y.T. Wang, E. Price, M. Feng, J. Hulen, S. Doktor, D.M. Stresser, E.M. Maes, Q.C. Ji, G.J. Jenkins. High-Throughput SFC-MS/MS Method to Measure EPSA and Predict Human Permeability. Journal of Medicinal Chemistry 2024 https://doi.org/10.1021/acs.jmedchem.4c00571.
D.A. Degoey, H.J. Chen, P.B. Cox, M.D. Wendt. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. Journal of Medicinal Chemistry 61 (2018) 2636-2651. https://doi.org/10.1021/acs.jmedchem.7b00717.
M. Shalaeva, G. Caron, Y.A. Abramov, T.N.O. Connell, M.S. Plummer, G. Yalamanchi, K.A. Farley, G.H. Goetz, L. Philippe, M.J. Shapiro. Integrating Intramolecular Hydrogen Bonding (IMHB) Considerations in Drug Discovery Using Δ logP as a Tool. Journal of Medicinal Chemistry 56 (2013) 4870-4879. https://doi.org/10.1021/jm301850m.
M. Rossi Sebastiano, B.C. Doak, M. Backlund, V. Poongavanam, B. Over, G. Ermondi, G. Caron, P. Matsson, J. Kihlberg. Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs beyond the Rule of 5. Journal of Medicinal Chemistry 61 (2018) 4189-4202. https://doi.org/10.1021/acs.jmedchem.8b00347.
E. Danelius, V. Poongavanam, S. Peintner, L.H.E. Wieske, M. Erdélyi, J. Kihlberg. Solution Conformations Explain the Chameleonic Behaviour of Macrocyclic Drugs. Chemistry - A European Journal 26 (2020) 5231-5244. https://doi.org/10.1002/chem.201905599.
D. Garcia Jimenez, M. Vallaro, M. Rossi Sebastiano, G. Apprato, G. D’Agostini, P. Rossetti, G. Ermondi, G. Caron. Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally Bioavailable Beyond-Rule-of-5 Drugs. Journal of Medicinal Chemistry 66 (2023) 10681-10693. https://doi.org/10.1021/acs.jmedchem.3c00823.
V. Poongavanam, L.H.E. Wieske, S. Peintner, M. Erdélyi, J. Kihlberg. Molecular chameleons in drug discovery. Nature Reviews Chemistry 8 (2024) 45-60. https://doi.org/10.1038/s41570-023-00563-1.
D. Garcia Jimenez, M. Rossi Sebastiano, M. Vallaro, G. Ermondi, G. Caron. IMHB-Mediated Chameleonicity in Drug Design: A Focus on Structurally Related PROTACs. Journal of Medicinal Chemistry 67 (2024) 11421-11434. https://doi.org/10.1021/acs.jmedchem.4c01200.
X. Jia, X. Han. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomedicine and Pharmacotherapy 158 (2023) 114112. https://doi.org/10.1016/j.biopha.2022.114112.
E.P. Hamilton, H. Han, A. Schott, A. Tan, R. Nanda, D. Jurić, N. Hunter, P. Munster, B. Fang, G. Zahrah, J. Ranciato, R. Gedrich, E. Zhi, Y. Zhang, W. Tan, C. Mather, J. Perkins, S. Anderson, S.A. Hurvitz. 390P Vepdegestrant, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, in ER+/human epidermal growth factor receptor 2 (HER2)- advanced breast cancer: Update of dose escalation results from a phase I/II trial. Annals of Oncology 34 (2023) S344. https://doi.org/10.1016/j.annonc.2023.09.567.
Y. He, R. Koch, V. Budamagunta, P. Zhang, X. Zhang, S. Khan, D. Thummuri, Y.T. Ortiz, X. Zhang, D. Lv, J.S. Wiegand, W. Li, A.C. Palmer, G. Zheng, D.M. Weinstock, D. Zhou. DT2216 - A Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. Journal of Hematology & Oncology 13 (2020). https://doi.org/10.1186/s13045-020-00928-9.
G. Apprato, V. Poongavanam, D.G. Jimenez, Y. Atilaw, M. Erdelyi, G. Ermondi, G. Caron, J. Kihlberg. Exploring the chemical space of orally bioavailable PROTACs. Drug Discovery Today 29 (2024) 103917. https://doi.org/10.1016/j.drudis.2024.103917.
K.R. Hornberger, E.M.V. Araujo. Physicochemical Property Determinants of Oral Absorption for PROTAC Protein Degraders. Journal of Medicinal Chemistry 66 (2023) 8281-8287. https://doi.org/10.1021/acs.jmedchem.3c00740.
G. Ermondi, D.G. Jimenez, M. Rossi Sebastiano, J. Kihlberg, G. Caron. Conformational Sampling Deciphers the Chameleonic Properties of a VHL-Based Degrader. Pharmaceutics 15 (2023) 272. https://doi.org/10.3390/pharmaceutics15010272.
Comments (0)