What matters for drug delivery to tumor by nanoparticles: Gaining insights from PBPK/PD simulation of drug nanocrystals

Y.S. Youn, Y.H. Bae. Perspectives on the past, present, and future of cancer nanomedicine. Advanced drug delivery reviews 130 (2018) 3-11. https://doi.org/10.1016/j.addr.2018.05.008

S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C. Chan. Analysis of nanoparticle delivery to tumours. Nature reviews materials 1 (2016) 16014. https://doi.org/10.1038/natrevmats.2016.14

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release 65 (2000) 271-284. https://doi.org/10.1016/S0168-3659(99)00248-5

H. Chen, W. Zhang, G. Zhu, J. Xie, X. Chen. Rethinking cancer nanotheranostics. Nature reviews materials 2 (2017) 17024. https://doi.org/10.1038/natrevmats.2017.24

Q. Dai, N. Bertleff-Zieschang, J.A. Braunger, M. Björnmalm, C. Cortez-Jugo, F. Caruso. Particle targeting in complex biological media. Advanced healthcare materials 7 (2018) 1700575. https://doi.org/10.1002/adhm.201700575

S.K. Golombek, J.-N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers. Tumor targeting via EPR: Strategies to enhance patient responses. Advanced drug delivery reviews 130 (2018) 17-38 https://doi.org/10.1016/j.addr.2018.07.007.

W.C. Zamboni, J. Szebeni, S.V. Kozlov, A.T. Lucas, J.A. Piscitelli, M.A. Dobrovolskaia. Animal models for analysis of immunological responses to nanomaterials: challenges and considerations. Advanced drug delivery reviews 136-137 (2018) 82-96. https://doi.org/10.1016/j.addr.2018.09.012

D. Prosperi, F. Corsi. Is bigger still better? Walking on the trail of cancer nanomedicine. 119 (2017) 149-152. https://doi.org/10.1016/j.phrs.2017.01.030

Y. Lu, Y. Lv, T. Li. Hybrid drug nanocrystals. Advanced drug delivery reviews 143 (2019) 115-133. https://doi.org/10.1016/j.addr.2019.06.006

C.P. Hollis, H.L. Weiss, M. Leggas, B.M. Evers, R.A. Gemeinhart, T. Li. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. Journal of controlled release 172 (2013) 12-21. https://doi.org/10.1016/j.jconrel.2013.06.039

W. Gao, Y. Chen, D.H. Thompson, K. Park, T. Li. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. Journal of controlled release 237 (2016) 168-176. https://doi.org/10.1016/j.jconrel.2016.07.015

R. Zhao, C.P. Hollis, H. Zhang, L. Sun, R.A. Gemeinhart, T. Li. Hybrid nanocrystals: achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Molecular pharmaceutics 8 (2011) 1985-1991. https://doi.org/10.1021/mp200154k

C.P. Hollis, T. Li. Nanocrystals production, characterization, and application for cancer therapy. Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing (2010) 1-26. https://doi.org/10.1002/9780470571224.pse495

Y. Lu, Y. Chen, R.A. Gemeinhart, W. Wu, T. Li. Developing nanocrystals for cancer treatment. Nanomedicine 10 (2015) 2537-2552. https://doi.org/10.2217/nnm.15.73

Y. Lu, Z.-h. Wang, T. Li, H. McNally, K. Park, M. Sturek. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. Journal of controlled release 176 (2014) 76-85. https://doi.org/10.1016/j.jconrel.2013.12.018

K. Hennenfent, R. Govindan. Novel formulations of taxanes: a review. Old wine in a new bottle? Annals of oncology 17 (2005) 735-749. https://doi.org/10.1093/annonc/mdj100

H.M. Jones, I.B. Gardner, K.J. Watson. Modelling and PBPK simulation in drug discovery. The AAPS journal 11 (2009) 155-166. https://doi.org/10.1208/s12248-009-9088-1

X. Zhuang, C. Lu. PBPK modeling and simulation in drug research and development. Acta Pharmaceutica Sinica B 6 (2016) 430-440. https://doi.org/10.1016/j.apsb.2016.04.004

F. Bouzom, K. Ball, N. Perdaems, B. Walther. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs? Biopharmaceutics & drug disposition 33 (2012) 55-71. https://doi.org/10.1002/bdd.1767

M. Li, P. Zou, K. Tyner, S. Lee. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. The AAPS journal 19 (2017) 26-42. https://doi.org/10.1208/s12248-016-0010-3

E.K. Rowinsky, R.C. Donehower. Paclitaxel (Taxol). New England Journal of Medicine 332 (1995) 1004-1014. https://doi.org/10.1056/nejm199504133321507

B. Davies, T. Morris. Physiological-Parameters in Laboratory-Animals and Humans. Pharmaceutical Research 10 (1993) 1093-1095. https://doi.org/10.1023/A:1018943613122

D.K. Pawaskar, R.M. Straubinger, G.J. Fetterly, B.H. Hylander, E.A. Repasky, W.W. Ma, W.J. Jusko. Physiologically based pharmacokinetic models for everolimus and sorafenib in mice. Cancer Chemother Pharmacol 71 (2013) 1219-1229. https://doi.org/10.1007/s00280-013-2116-y

W.C. Buijs, J.A. Siegel, O.C. Boerman, F.H. Corstens. Absolute organ activity estimated by five different methods of background correction. Journal of Nuclear Medicine 39 (1998) 2167-2172.

D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics 11 (1963) 431-441.

J.W. Fisher, D. Mahle, R. Abbas. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicology and applied pharmacology 152 (1998) 339-359. https://doi.org/10.1006/taap.1998.8486

D.E. Mager, W.J. Jusko. Pharmacodynamic modeling of time - dependent transduction systems. Clinical Pharmacology & Therapeutics 70 (2001) 210-216. https://doi.org/10.1067/mcp.2001.118244

Y.N. Sun, W.J. Jusko. Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. Journal of pharmaceutical sciences 87 (1998) 732-737. https://doi.org/10.1021/js970414z

M. Simeoni, P. Magni, C. Cammia, G. De Nicolao, V. Croci, E. Pesenti, M. Germani, I. Poggesi, M. Rocchetti. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer research 64 (2004) 1094-1101. https://doi.org/10.1158/0008-5472.CAN-03-2524

A. Brú, S. Albertos, J.L. Subiza, J.L. García-Asenjo, I. Brú. The universal dynamics of tumor growth. Biophysical journal 85 (2003) 2948-2961. https://doi.org/10.1016/S0006-3495(03)74715-8

H. Schmidt, M. Jirstrand. Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22 (2005) 514-515. https://doi.org/10.1093/bioinformatics/bti799

A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto. Sensitivity analysis in practice: a guide to assessing scientific models. Viley, Chichester, England (2004). https://doi.org/10.1002/0470870958

C.L. Carter, C. Allen, D.E. Henson. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63 (1989) 181-187.

D.S. Sonnichsen, M.V. Relling. Clinical pharmacokinetics of paclitaxel. Clinical pharmacokinetics 27 (1994) 256-269. https://doir.org/10.2165/00003088-199427040-00002

R.K. Jain, K. Ward-Hartley. Tumor blood flow-characterization, modifications, and role in hyperthermia. IEEE Transactions on sonics and ultrasonics 31 (1984) 504-525. https://doi.org/10.1109/T-SU.1984.31536

Y.F. Li, C. Zhang, S. Zhou, M. He, H. Zhang, N. Chen, F. Li, X. Luan, M. Pai, H. Yuan. Species difference in paclitaxel disposition correlated with poor pharmacological efficacy translation from mice to humans. Clinical pharmacology: advances and applications 10 (2018) 165. https://doi.org/10.2147/CPAA.S185449

Comments (0)

No login
gif