Zhang X, Qin M, Xu M, Miao F, Merzougui C, Zhang X, Wei Y, Chen W, Huang D. The fabrication of antibacterial hydrogels for wound healing. Eur Polymer J. 2021;146:110268. https://doi.org/10.1016/j.eurpolymj.2021.110268.
Singh S, Chittasupho C, Prajapati BG, Chandel AS. Editorial: Biodegradable polymeric materials in tissue engineering and their application in drug delivery. Front Bioeng Biotechnol 2023;11, https://doi.org/10.3389/fbioe.2023.1296119.
Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Khafaga AF, Abd El-Hakim YM, Al-Sagheer AA. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol. 2020;164:2726–44. https://doi.org/10.1016/j.ijbiomac.2020.08.153.
Article CAS PubMed Google Scholar
Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5:686–705. https://doi.org/10.1038/s41578-020-0209-x.
Article CAS ADS Google Scholar
Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15:12687–722. https://doi.org/10.1021/acsnano.1c04206.
Article CAS PubMed Google Scholar
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020, 12, https://doi.org/10.3390/pharmaceutics12080735.
Singh SA, Vellapandian C, Shah DD, Jayeoye TJ, Chorawala MR, Singh S, Prajapati BG. Valorised calcium-rich biomass from fish waste and eggshells in the fabrication of antibacterial scaffold for wound healing applications: a review. Waste and Biomass Valorization 2023. https://doi.org/10.1007/s12649-023-02302-5
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10: 200223. https://doi.org/10.1098/rsob.200223.
Article CAS PubMed PubMed Central Google Scholar
Robert AW, Azevedo Gomes F, Rode MP, Marques da Silva M, Veleirinho MBdR, Maraschin M, Hayashi L, Wosgrau Calloni G, Stimamiglio MA. The skin regeneration potential of a pro-angiogenic secretome from human skin-derived multipotent stromal cells. J Tissue Eng 2019;10:2041731419833391, https://doi.org/10.1177/2041731419833391.
Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L, Wu S. Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol 2021;9.
Ontong JC, Singh S, Siriyong T, Voravuthikunchai SP. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotech Lett. 2024;46:127–42. https://doi.org/10.1007/s10529-023-03452-1.
Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Eur Polymer J. 2020;130:109609. https://doi.org/10.1016/j.eurpolymj.2020.109609.
Ayoubi-Joshaghani MH, Seidi K, Azizi M, Jaymand M, Javaheri T, Jahanban-Esfahlan R, Hamblin MR. Potential applications of advanced nano/hydrogels in biomedicine: static, dynamic, multi-stage, and bioinspired. Adv Func Mater. 2020;30:2004098. https://doi.org/10.1002/adfm.202004098.
Tyeb S, Kumar N, Kumar A, Verma V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohyd Polym. 2018;200:572–82. https://doi.org/10.1016/j.carbpol.2018.08.030.
Li X, Wan L, Zhu T, Li R, Zhang M, Lu H. Biomimetic liquid crystal-modified mesoporous silica–based composite hydrogel for soft tissue repair. J Function Biomater 2023;14, https://doi.org/10.3390/jfb14060316.
Long X, Xu X, Sun D, Hong Y, Wen C, Xie Y, Yan B, Zhang H, Ge Q, Li W, et al. Biomimetic macroporous hydrogel with a triple-network structure for full-thickness skin regeneration. Appl Mater Today. 2022;27: 101442. https://doi.org/10.1016/j.apmt.2022.101442.
Ontong JC, Singh S, Siriyong T, Voravuthikunchai SP. Value-added natural colorants from Oryza sativa L. and Eleutherine americana (L.) Merr. waste as a safe alternative for remedial cosmeceutical applications. Waste Biomass Valorization 2023, https://doi.org/10.1007/s12649-023-02319-w.
Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, et al. Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces. 2019;6:1900761. https://doi.org/10.1002/admi.201900761.
Schlottmann F, Obed D, Bingöl AS, März V, Vogt PM, Krezdorn N. Treatment of complex wounds with NovoSorb®; biodegradable temporising matrix (BTM)—a retrospective analysis of clinical outcomes. J Personal Med 2022;12, https://doi.org/10.3390/jpm12122002.
Cheshire PA, Herson MR, Cleland H, Akbarzadeh S. Artificial dermal templates: a comparative study of NovoSorb™ Biodegradable Temporising Matrix (BTM) and Integra® Dermal Regeneration Template (DRT). Burns. 2016;42:1088–96. https://doi.org/10.1016/j.burns.2016.01.028.
Tsegay F, Elsherif M, Butt H. Smart 3D printed hydrogel skin wound bandages: a review. Polymers 2022;14, https://doi.org/10.3390/polym14051012.
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021;11, https://doi.org/10.3390/biom11050700.
Tsegay F, Elsherif M, Butt H. Smart 3D printed hydrogel skin wound bandages: a review. Polymers (Basel) 2022;14, https://doi.org/10.3390/polym14051012.
Elangwe CN, Morozkina SN, Olekhnovich RO, Krasichkov A, Polyakova VO, Uspenskaya MV. A review on chitosan and cellulose hydrogels for wound dressings. Polymers (Basel) 2022;14, https://doi.org/10.3390/polym14235163.
Kahle B, Hermanns HJ, Gallenkemper G. Evidence-based treatment of chronic leg ulcers. Dtsch Arztebl Int. 2011;108:231–7. https://doi.org/10.3238/arztebl.2011.0231.
Article PubMed PubMed Central Google Scholar
Irfan-Maqsood, M. Classification of wounds: know before research and clinical practice. Cell Ther Regen Med J 2016;1:79, https://doi.org/10.15562/ctrm.21.
Moreo K. Understanding and overcoming the challenges of effective case management for patients with chronic wounds. Case Manager 2005;16:62–63, 67, https://doi.org/10.1016/j.casemgr.2005.01.014.
Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004;187:S65–70. https://doi.org/10.1016/S0002-9610(03)00306-4.
Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem. 2021;5:773–91. https://doi.org/10.1038/s41570-021-00323-z.
Article CAS PubMed Google Scholar
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-based hydrogel in the management of dermal infections: a review. Gels. 2023;9:594.
Article CAS PubMed PubMed Central Google Scholar
Al-Shudiefat AA-RS, Am Alzyoud J, Al Najjar SA, Talat S, Bustanji Y, Abu-Irmaileh B. The effects of some natural products compared to synthetic products on the metabolic activity, proliferation, viability, migration, and wound healing in sheep tenocytes. Saudi J Biol Sci 2022;29:103391, https://doi.org/10.1016/j.sjbs.2022.103391.
Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. Cutaneous wound healing: an update from physiopathology to current therapies. Life. 2021;11:665.
Article CAS PubMed PubMed Central ADS Google Scholar
Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, Kusolphat P, Hemtanon N, Klinprathum K, Sunghan J, et al. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol. 2022;216:235–50. https://doi.org/10.1016/j.ijbiomac.2022.06.172.
Article CAS PubMed Google Scholar
Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings. APL Bioeng. 2021;5:011504. https://doi.org/10.1063/5.0038364.
Article CAS PubMed PubMed Central Google Scholar
Choi J, Hong G, Kwon T, Lim JO. Fabrication of oxygen releasing scaffold by embedding H2O2-PLGA microspheres into alginate-based hydrogel sponge and its application for wound healing. Appl Sci 2018;8, https://doi.org/10.3390/app8091492.
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298–415. https://doi.org/10.1021/acs.chemrev.8b00593.
Article CAS PubMed PubMed Central Google Scholar
Ilomuanya MO, Okafor PS, Amajuoyi JN, Onyejekwe JC, Okubanjo OO, Adeosun SO, Silva BO. Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. Beni-Suef Univ J Basic Appl Sci. 2020;9:31. https://doi.org/10.1186/s43088-020-00057-9.
Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol. 2005;167:283–93. https://doi.org/10.1016/j.jmatprotec.2005.06.053.
Hong J, Yeo M, Yang GH, Kim G. Cell-electrospinning and its application for tissue engineering. Intl J Mol Sci 2019;20, https://doi.org/10.3390/ijms20246208.
Singh S, Chidrawar VR, Hermawan D, Dodiya R, Samee W, Ontong JC, Ushir YV, Prajapati BG, Chittasupho C. Hypromellose highly swellable composite fortified with Psidium guajava leaf phenolic-rich extract for antioxidative, antibacterial, anti-inflammatory, anti-melanogenesis, and hemostasis applications. J Polym Environ 2023. https://doi.org/10.1007/s10924-023-02819-9
Singh S, Chunglok W, Nwabor OF, Chulrik W, Jansakun C, Bhoopong P. Porous biodegradable sodium alginate composite fortified with Hibiscus sabdariffa L. Calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life. J Polym Environ 2023;31:922–938, https://doi.org/10.1007/s10924-022-02596-x.
Chidrawar VR, Singh S, Jayeoye TJ, Dodiya R, Samee W, Chittasupho C. Porous swellable hypromellose composite fortified with Eucalyptus camaldulensis leaf hydrophobic/hydrophilic phenolic-rich extract to mitigate dermal wound infections. J Polym Environ. 2023;31:3841–56. https://doi.org/10.1007/s10924-023-02860-8.
Teimouri A, Azadi M. Preparation and characterization of novel chitosan/nanodiopside/nanohydroxyapatite composite scaffolds for tissue engineering applications. Int J Polym Mater Polym Biomater. 2016;65:917–27. https://doi.org/10.1080/00914037.2016.1180606.
Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-based processing for scaffold fabrication in tissue engineering applications: a brief review. Polymers 2021, 13, https://doi.org/10.3390/polym13132041.
Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-based scaffolds for soft-tissue engineering. Polymers 2020;12, https://doi.org/10.3390/polym12071566.
Li L, Zhou Y, Li P, Xu Q, Li K, Hu H, Bing W, Zhang Z. Peptide hydrogel based sponge patch for wound infection treatment. Front Bioeng Biotechnol 2022;10.
Sornkamnerd S, Okajima MK, Kaneko T. Tough and porous hydrogels prepared by simple lyophilization of LC gels. ACS Omega. 2017;2:5304–14. https://doi.org/10.1021/acsomega.7b00602.
Article CAS PubMed PubMed Central Google Scholar
Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3:61–102. https://doi.org/10.1007/s40204-014-0026-7.
Article PubMed PubMed Central Google Scholar
Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: a systematic review. J Drug Delivery Sci Technol. 2022;74:103564. https://doi.org/10.1016/j.jddst.2022.103564.
Uchida DT, Bruschi ML. 3D Printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech. 2023;24:41. https://doi.org/10.1208/s12249-023-02503-0.
Comments (0)