Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities

Figliomeni A, Signorini V, Mazzantini M, One year in review,. progress in osteoporosis treatment. Clin Exp Rheumatol. 2018;2018:36.

Google Scholar 

Habibovic, P. Strategic directions in osteoinduction and biomimetics. Tissue Eng. - Part A 2017, 23.

Bahney, C.S.; Zondervan, R.L.; Allison, P.; Theologis, A.; Ashley, J.W.; Ahn, J.; Miclau, T.; Marcucio, R.S.; Hankenson, K.D. Cellular biology of fracture healing. J. Orthop. Res. 2019, 37.

Ferracini, R.; Martínez Herreros, I.; Russo, A.; Casalini, T.; Rossi, F.; Perale, G. Scaffolds as structural tools for bone-targeted drug delivery. Pharmaceutics 2018, 10.

Blahnova, V.; Vocetkova, K.; Hlinkova, J.; Divin, R.; Amler, E.; Filova, E. PCL scaffold for osteochondral defect treatment. In Key engineering materials; 2020; Vol. 834 KEM.

van Dijk, C.N.; Reilingh, M.L.; Zengerink, M.; van Bergen, C.J.A. Osteochondral defects in the ankle: why painful? Knee Surgery, Sport. Traumatol. Arthrosc. 2010, 18, https://doi.org/10.1007/s00167-010-1064-x.

Gomoll, A.H.; Madry, H.; Knutsen, G.; van Dijk, N.; Seil, R.; Brittberg, M.; Kon, E. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surgery, Sport. Traumatol. Arthrosc. 2010, 18, https://doi.org/10.1007/s00167-010-1072-x.

Grande, D.A.; Breitbart, A.S.; Mason, J.; Paulino, C.; Laser, J.; Schwartz, R.E. Cartilage tissue engineering: current limitations and solutions. In Proceedings of the Clinical Orthopaedics and Related Research; 1999.

Iaquinta, M.R.; Mazzoni, E.; Bononi, I.; Rotondo, J.C.; Mazziotta, C.; Montesi, M.; Sprio, S.; Tampieri, A.; Tognon, M.; Martini, F. Adult stem cells for bone regeneration and repair. Front. Cell Dev. Biol. 2019, 7.

Gorbachova, T.; Melenevsky, Y.; Cohen, M.; Cerniglia, B.W. Osteochondral lesions of the knee: differentiating the most common entities at MRI. Radiographics 2018, 38, https://doi.org/10.1148/rg.2018180044.

Jacob, G.; Shimomura, K.; Nakamura, N. Osteochondral injury, management and tissue engineering approaches. Front. Cell Dev. Biol. 2020, 8.

Sorrento, D.L.; Mlodzienski, A. Incidence of lateral talar dome lesions in SER IV ankle fractures. J. Foot Ankle Surg. 2000, 39, https://doi.org/10.1016/S1067-2516(00)80070-8.

Martijn, H.A.; Lambers, K.T.A.; Dahmen, J.; Stufkens, S.A.S.; Kerkhoffs, G.M.M.J. High incidence of (osteo)chondral lesions in ankle fractures. Knee Surgery, Sport. Traumatol. Arthrosc. 2021, 29, https://doi.org/10.1007/s00167-020-06187-y.

Jimeno Torres, E.; Ibañez, M.; Campillo Recio, D.; Alberti Fito, G.; Mendez Gil, A.; Jimeno Torres, J.M. Retrograde drilling with tibial autograft in osteochondral lesions of the talar dome. Arthrosc. Tech. 2020, 9, https://doi.org/10.1016/j.eats.2020.04.015.

Gupta, R.; Goel, A.; Pruthi, M. Treatment options for osteochondral defects. J. Clin. Orthop. Trauma 2010, 1.

Sáez-López, P.; Etxebarria-Foronda, I.; Mesa Lampre, M.P.; Alonso García, N.; Sánchez Hernández, N. Efficacy, cost, and aspects to take into account in the treatment of osteoporosis in the elderly. Rev. Esp. Geriatr. Gerontol. 2019, 54.

Lozito, T.P.; Alexander, P.G.; Lin, H.; Gottardi, R.; Cheng, A.W.M.; Tuan, R.S. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res. Ther. 2013, 4.

Friedman, B.W.; O’Mahony, S.; Mulvey, L.; Davitt, M.; Choi, H.; Xia, S.; Esses, D.; Bijur, P.E.; Gallagher, E.J. One-week and 3-month outcomes after an emergency department visit for undifferentiated musculoskeletal low back pain. Ann. Emerg. Med. 2012, 59, https://doi.org/10.1016/j.annemergmed.2011.09.012.

Xiao, L.; Ren, J. ze; Li, Q.; Yang, B.; Liu, Z. jiang; Chen, R. bing; Zhang, L. Genome-wide analysis of AP2/ERF superfamily in Isatis indigotica. J. Integr. Med. 2023, 21, https://doi.org/10.1016/j.joim.2022.09.003.

Zhytnik, L.; Maasalu, K.; Reimann, E.; Prans, E.; Kõks, S.; Märtson, A. Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients. Hum. Genomics 2017, 11, https://doi.org/10.1186/s40246-017-0115-5.

Morello, R. Osteogenesis imperfecta and therapeutics. Matrix Biol. 2018, 71–72.

Yucesoy, B.; Charles, L.E.; Baker, B.; Burchfiel, C.M. Occupational and genetic risk factors for osteoarthritis: a review. Work 2015, 50.

Hasan, M.; Shuckett, R. Clinical features and pathogenetic mechanisms of osteo - arthritis of the hip and knee. B. C. Med. J. 2010, 52.

Kwan, M.D.; Slater, B.J.; Wan, D.C.; Longaker, M.T. Cell-based therapies for skeletal regenerative medicine. Hum. Mol. Genet. 2008, 17, https://doi.org/10.1093/hmg/ddn071.

Ude, C.C.; Miskon, A.; Idrus, R.B.H.; Abu Bakar, M. Bin application of stem cells in tissue engineering for defense medicine. Mil. Med. Res. 2018, 5.

Shammaa, R.; El-Kadiry, A.E.H.; Abusarah, J.; Rafei, M. Mesenchymal stem cells beyond regenerative medicine. Front. Cell Dev. Biol. 2020, 8.

Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res. Ther. 2022, 13.

Hegenscheid, K.; Puls, R.; Rosenberg, C. Imaging strategies for knee injuries. Radiologe 2012, 52, https://doi.org/10.1007/s00117-012-2411-3.

C., S.; A., L.; C., C.; A., B.; D., C.; D.J., S.; M., J.; V., V.; I., M. Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: state-of-the-art and future perspectives. Tech. Foot Ankle Surg. 2011, 10.

Sirlin, C.B.; Brossmann, J.; Boutin, R.D.; Pathria, M.N.; Richard Convery, F.; Bugbee, W.; Deutsch, R.; Lebeck, L.K.; Resnick, D. Shell osteochondral allografts of the knee: comparison of MR imaging findings and immunologic responses. Radiology 2001, 219, https://doi.org/10.1148/radiology.219.1.r01ap0435.

Recht, M.P.; Kramer, J. MR Imaging of the postoperative knee: a pictorial essay. Radiographics 2002, 22.

Pisanu, G.; Cottino, U.; Rosso, F.; Blonna, D.; Marmotti, A.G.; Bertolo, C.; Rossi, R.; Bonasia, D.E. Large osteochondral allografts of the knee: surgical technique and indications. Joints 2018, 6.

Maglio, M.; Brogini, S.; Pagani, S.; Giavaresi, G.; Tschon, M. Current trends in the evaluation of osteochondral lesion treatments: histology, histomorphometry, and biomechanics in preclinical models. Biomed Res. Int. 2019, 2019.

Tottey, S.; Johnson, S.A.; Crapo, P.M.; Reing, J.E.; Zhang, L.; Jiang, H.; Medberry, C.J.; Reines, B.; Badylak, S.F. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 2011, 32, https://doi.org/10.1016/j.biomaterials.2010.09.006.

Papavassiliou, A.G.; Pneumaticos, S.G.; Evangelopoulos, D.S. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol. Med. 2014, 20, https://doi.org/10.2119/molmed.2014.00145.

Merimi, M.; El-Majzoub, R.; Lagneaux, L.; Moussa Agha, D.; Bouhtit, F.; Meuleman, N.; Fahmi, H.; Lewalle, P.; Fayyad-Kazan, M.; Najar, M. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front. Cell Dev. Biol. 2021, 9.

Varshney, S.; Dwivedi, A.; Pandey, V. Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion - a systematic review of human studies. J. Oral Biol. Craniofacial Res. 2020, 10.

Bruder, S.P.; Kraus, K.H.; Goldberg, V.M.; Kadiyala, S. The Effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Jt. Surg. 1998, 80, https://doi.org/10.2106/00004623-199807000-00007.

El Tamer, M.K.; Reis, R.L. Progenitor and stem cells for bone and cartilage regeneration. J. Tissue Eng. Regen. Med. 2009, 3.

Mueller, S.M.; Glowacki, J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J. Cell. Biochem. 2001, 82, https://doi.org/10.1002/jcb.1174.

Kim, Y.J.; Kim, H.J.; Im, G. Il PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochem. Biophys. Res. Commun. 2008, 373, https://doi.org/10.1016/j.bbrc.2008.05.183.

Ishiguro, H.; Kaito, T.; Yarimitsu, S.; Hashimoto, K.; Okada, R.; Kushioka, J.; Chijimatsu, R.; Takenaka, S.; Makino, T.; Sakai, Y.; et al. Intervertebral disc regeneration with an adipose mesenchymal stem cell-derived tissue-engineered construct in a rat nucleotomy model. Acta Biomater. 2019, 87, https://doi.org/10.1016/j.actbio.2019.01.050.

Lin, G.; Garcia, M.; Ning, H.; Banie, L.; Guo, Y.L.; Lue, T.F.; Lin, C.S. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev. 2008, 17, https://doi.org/10.1089/scd.2008.0117.

Khan, W.S.; Tew, S.R.; Adesida, A.B.; Hardingham, T.E. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Res. Ther. 2008, 10, https://doi.org/10.1186/ar2448.

Yoshimura, H.; Muneta, T.; Nimura, A.; Yokoyama, A.; Koga, H.; Sekiya, I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007, 327, https://doi.org/10.1007/s00441-006-0308-z.

Yee Lui, P.P. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning Adv. Appl. 2015, 8.

Pessina, A.; Gribaldo, L. The key role of adult stem cells: therapeutic perspectives. Curr. Med. Res. Opin. 2006, 22.

Camargo, F.D.; Finegold, M.; Goodell, M.A. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J. Clin. Invest. 2004, 113, https://doi.org/10.1172/JCI21301.

Akbar A. Stem cell therapy in dentistry. World J Pharm Pharm Sci. 2017. https://doi.org/10.20959/wjpps20174-9003.

Article  Google Scholar 

Picoli, C. de C.; Birbrair, A.; Li, Z. Pericytes as the orchestrators of vasculature and adipogenesis. Genes (Basel). 2024, 15.

Bernardini, C.; Mantia, D. La; Salaroli, R.; Ventrella, D.; Elmi, A.; Zannoni, A.; Forni, M. Isolation of vascular wall mesenchymal stem cells from the thoracic aorta of adult Göttingen minipigs: a new protocol for the simultaneous endothelial cell collection. Animals 2023, 13, https://doi.org/10.3390/ani13162601.

Farrington-Rock, C.; Crofts, N.J.; Doherty, M.J.; Ashton, B.A.; Griffin-Jones, C.; Canfield, A.E. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004, 110, https://doi.org/10.1161/01.CIR.0000144457.55518.E5.

Tintut, Y.; Alfonso, Z.; Saini, T.; Radcliff, K.; Watson, K.; Boström, K.; Demer, L.L. Multilineage potential of cells from the artery wall. Circulation 2003, 108, https://doi.org/10.1161/01.CIR.0000096485.64373.C5.

Usas, A.; Huard, J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 2007, 28, https://doi.org/10.1016/j.biomaterials.2007.09.008.

Bi, Y.; Ehirchiou, D.; Kilts, T.M.; Inkson, C.A.; Embree, M.C.; Sonoyama, W.; Li, L.; Leet, A.I.; Seo, B.M.; Zhang, L.; et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 2007, 13, https://doi.org/10.1038/nm1630.

Kim, S.H.; Kim, Y.S.; Lee, S.Y.; Kim, K.H.; Lee, Y.M.; Kim, W.K.; Lee, Y.K. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow. J. Periodontal Implant Sci. 2011, 41, https://doi.org/10.5051/jpis.2011.41.4.192.

Lavoie, J.F.; Biernaskie, J.A.; Chen, Y.; Bagli, D.; Alman, B.; Kaplan, D.R.; Miller, F.D. Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev. 2009, 18, https://doi.org/10.1089/scd.2008.0260.

Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells. 2024;16:410–33. https://doi.org/10.4252/WJSC.V16.I4.410.

Article  PubMed  PubMed Central  Google Scholar 

Omlor, G.W.; Lorenz, S.; Nerlich, A.G.; Guehring, T.; Richter, W. Disc cell therapy with bone-marrow-derived autologous mesenchymal stromal cells in a large porcine disc degeneration model. Eur. Spine J. 2018, 27, https://doi.org/10.1007/s00586-018-5728-4.

Elabd, C.; Centeno, C.J.; Schultz, J.R.; Lutz, G.; Ichim, T.; Silva, F.J. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study. J. Transl. Med. 2016, 14, https://doi.org/10.1186/s12967-016-1015-5.

Orozco, L.; Soler, R.; Morera, C.; Alberca, M.; Sánchez, A.; García-Sancho, J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 2011, 92, https://doi.org/10.1097/TP.0b013e3182298a15.

Cao, L.; Liu, G.; Gan, Y.; Fan, Q.; Yang, F.; Zhang, X.; Tang, T.; Dai, K. The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 2012, 33, https://doi.org/10.1016/j.biomaterials.2012.03.069.

Horwitz, E.M.; Prockop, D.J.; Fitzpatrick, L.A.; Koo, W.W.K.; Gordon, P.L.; Neel, M.; Sussman, M.; Orchard, P.; Marx, J.C.; Pyeritz, R.E.; et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 1999, 5, https://doi.org/10.1038/6529.

Kim, J.E.; Lee, S.M.; Kim, S.H.; Tatman, P.; Gee, A.O.; Kim, D.H.; Lee, K.E.; Jung, Y.; Kim, S.J. Effect of self-assembled peptide-mesenchymal stem cell complex on the progression of osteoarthritis in a rat model. Int. J. Nanomedicine 2014, 9, https://doi.org/10.2147/IJN.S54114.

Davatchi, F.; Abdollahi, B.S.; Mohyeddin, M.; Shahram, F.; Nikbin, B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 2011, 14, https://doi.org/10.1111/j.1756-185X.2011.01599.x.

Emadedin, M.; Aghdami, N.; Taghiyar, L.; Fazeli, R.; Moghadasali, R.; Jahangir, S.; Farjad, R.; Eslaminejad, M.B. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch. Iran. Med. 2012, 15, 012157/AIM.0010.

Lehmann, T.P.; Filipiak, K.; Juzwa, W.; Sujka-Kordowska, P.; Jagodziński, P.P.; Zabel, M.; Głowacki, J.; Misterska, E.; Walczak, M.; Głowacki, M. Co-culture of human nucleus pulposus cells with multipotent mesenchymal stromal cells from human bone marrow reveals formation of tunnelling nanotubes. Mol. Med. Rep. 2014, 9, https://doi.org/10.3892/mmr.2013.1821.

Cao, C.; Zou, J.; Liu, X.; Shapiro, A.; Moral, M.; Luo, Z.; Shi, Q.; Liu, J.; Yang, H.; Ebraheim, N. Bone marrow mesenchymal stem cells slow intervertebral disc degeneration through the NF-ΚB pathway. Spine J. 2015, 15, https://doi.org/10.1016/j.spinee.2014.11.021.

Zhou, Y.; Hu, X.; Zheng, X.; Wu, Y.; Tian, N.; Xu, H.; Zhang, X. Differentiation potential of mesenchymal stem cells derived from adipose tissue vs bone marrow toward annulus fibrosus cells in vitro. Curr. Stem Cell Res. Ther. 2017, 12, https://doi.org/10.2174/1574888x12666170214093955.

Lu, K.; Li, H. yin; Yang, K.; Wu, J. long; Cai, X. wei; Zhou, Y.; Li, C. Qing Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 2017, 8, https://doi.org/10.1186/s13287-017-0563-9.

Cheng, X.; Zhang, G.; Zhang, L.; Hu, Y.; Zhang, K.; Sun, X.; Zhao, C.; Li, H.; Li, Y.M.; Zhao, J. Mesenchymal stem cells deliver exogenous MiR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell. Mol. Med. 2018, 22, https://doi.org/10.1111/jcmm.13316.

Yang, H.; Tian, W.; Wang, S.; Liu, X.; Wang, Z.; Hou, L.; Ge, J.; Zhang, X.; He, Z.; Wang, X. TSG-6 secreted by bone marrow mesenchymal stem cells attenuates intervertebral disc degeneration by inhibiting the TLR2/NF-ΚB signaling pathway. Lab. Investig. 2018, 98, https://doi.org/10.1038/s41374-018-0036-5.

Xia, C.; Zeng, Z.; Fang, B.; Tao, M.; Gu, C.; Zheng, L.; Wang, Y.; Shi, Y.; Fang, C.; Mei, S.; et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic. Biol. Med. 2019, 143, https://doi.org/10.1016/j.freeradbiomed.2019.07.026.

Sakai, D.; Mochida, J.; Iwashina, T.; Hiyama, A.; Omi, H.; Imai, M.; Nakai, T.; Ando, K.; Hotta, T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006, 27, https://doi.org/10.1016/j.biomaterials.2005.06.038.

Zhou, Y.; Tu, G.; Cong, L.; Pei, Z. Effects of transplantation of HTIMP-1-expressing bone marrow mesenchymal stem cells on the extracellular matrix of degenerative intervertebral discs in an in vivo rabbit model. Spine (Phila. Pa. 1976). 2014, 39, https://doi.org/10.1097/BRS.0000000000000316.

Teixeira, G.Q.; Pereira, C.L.; Ferreira, J.R.; Maia, A.F.; Gomez-Lazaro, M.; Barbosa, M.A.; Neidlinger-Wilke, C.; Gonçalves, R.M. Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration: insights from a proinflammatory/degenerative ex vivo model. Spine (Phila. Pa. 1976). 2017, https://doi.org/10.1097/brs.0000000000002494.

Hussain, I.; Sloan, S.R.; Wipplinger, C.; Navarro-Ramirez, R.; Zubkov, M.; Kim, E.; Kirnaz, S.; Bonassar, L.J.; Härtl, R. Mesenchymal stem cell-seeded high-density collagen gel for annular repair: 6-week results from in vivo sheep models. Neurosurgery 2019, 85, https://doi.org/10.1093/neuros/nyy523.

Yan, H.S.; Hang, C.; Chen, S.W.; Wang, K.K.; Bo, P. Salvianolic acid B combined with mesenchymal stem cells contributes to nucleus pulposus regeneration. Connect. Tissue Res. 2020, 61, https://doi.org/10.1080/03008207.2019.1611794.

Lykov, A.P.; Bondarenko, N.A.; Poveshchenko, O. V.; Kim, I.I.; Surovtseva, M.A.; Sadykova, J.B.; Semin, P.A.; Zavjalov, E.L.; Krivoshapkin, A.L.; Konenkov, V.I. Treatment of intervertebral disc degeneration in wistar rats with mesenchymal stem cells. Bull. Exp. Biol. Med. 2020, 168, https://doi.org/10.1007/s10517-020-04756-2.

Itokazu, M.; Wakitani, S.; Mera, H.; Tamamura, Y.; Sato, Y.; Takagi, M.; Nakamura, H. Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair: a preclinical study. Cartilage 2016, 7, https://doi.org/10.1177/1947603515627342.

Hernigou, P.; Beaujean, F. Treatment of osteonecrosis with autologous bone marrow grafting. In Proceedings of the Clinical Orthopaedics and Related Research; 2002; Vol. 405.

Gangji, V.; Hauzeur, J.P.; Matos, C.; De Maertelaer, V.; Toungouz, M.; Lambermont, M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. J. Bone Jt. Surg. 2004, 86, https://doi.org/10.2106/00004623-200406000-00006.

Hernigou, P.; Poignard, A.; Zilber, S.; Rouard, H. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J. Orthop. 2009, 43, https://doi.org/10.4103/0019-5413.45322.

Neen, D.; Noyes, D.; Shaw, M.; Gwilym, S.; Fairlie, N.; Birch, N. Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft. Spine (Phila. Pa. 1976). 2006, 31, https://doi.org/10.1097/01.brs.0000232028.97590.12.

Gan, Y.; Dai, K.; Zhang, P.; Tang, T.; Zhu, Z.; Lu, J. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008, 29, https://doi.org/10.1016/j.biomaterials.2008.06.026.

Wright, J.G.; Yandow, S.; Donaldson, S.; Marley, L. A randomized clinical trial comparing intralesional bone marrow and steroid injections for simple bone cysts. J. Bone Jt. Surg. 2008, 90, https://doi.org/10.2106/JBJS.G.00620.

Park, I.H.; Micic, I.D.; Jeon, I.H. A study of 23 unicameral bone cysts of the calcaneus: open chip allogeneic bone graft versus percutaneous injection of bone powder with autogenous bone marrow. Foot Ankle Int. 2008, 29, https://doi.org/10.3113/FAI.2008.0164.

Zamzam, M.M.; Abak, A.A.; Bakarman, K.A.; Al-Jassir, F.F.; Khoshhal, K.I.; Zamzami, M.M. Efficacy of aspiration and autogenous bone marrow injection in the treatment of simple bone cysts. Int. Orthop. 2009, 33, https://doi.org/10.1007/s00264-008-0619-7.

Salama, R.; Weissman, S.L. The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report. J. Bone Jt. Surg. - Ser. B 1978, 60 B, https://doi.org/10.1302/0301-620x.60b1.342531.

Jager, M.; Jelinek, E.; Wess, K.; Scharfstadt, A.; Jacobson, M.; Kevy, S.; Krauspe, R. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr. Stem Cell Res. Ther. 2009, 4, https://doi.org/10.2174/157488809787169039.

Hung, S.; Chen, N.; Hsieh, S.; Li, H.; Ma, H.; Lo, W. Isolation and characterization of size‐sieved stem cells from human bone marrow. Stem Cells 2002, 20, https://doi.org/10.1634/stemcells.20-3-249.

Mabuchi, Y.; Houlihan, D.D.; Akazawa, C.; Okano, H.; Matsuzaki, Y. Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int. 2013.

Im, G. Il; Shin, Y.W.; Lee, K.B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 2005, 13, https://doi.org/10.1016/j.joca.2005.05.005.

Liu, T.M.; Martina, M.; Hutmacher, D.W.; Hui, J.H.P.; Lee, E.H.; Lim, B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007, 25, https://doi.org/10.1634/stemcells.2006-0394.

Ishihara, K.; Nakayama, K.; Akieda, S.; Matsuda, S.; Iwamoto, Y. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J. Orthop. Surg. Res. 2014, 9, https://doi.org/10.1186/s13018-014-0098-z.

Sato, Y.; Wakitani, S.; Takagi, M. Xeno-free and shrinkage-free preparation of scaffold-free cartilage-like disc-shaped cell sheet using human bone marrow mesenchymal stem cells. J. Biosci. Bioeng. 2013, 116, https://doi.org/10.1016/j.jbiosc.2013.05.019.

Maeda, S.; Fujitomo, T.; Okabe, T.; Wakitani, S.; Takagi, M. Shrinkage-free preparation of scaffold-free cartilage-like disk-shaped cell sheet using human bone marrow mesenchymal stem cells. J. Biosci. Bioeng. 2011, 111, https://doi.org/10.1016/j.jbiosc.2010.11.022.

Jeong, J.H.; Lee, J.H.; Jin, E.S.; Min, J.K.; Jeon, S.R.; Choi, K.H. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir. (Wien). 2010, 152, https://doi.org/10.1007/s00701-010-0698-2.

Arrigoni, E.; De Girolamo, L.; Di Giancamillo, A.; Stanco, D.; Dellavia, C.; Carnelli, D.; Campagnol, M.; Domeneghini, C.; Brini, A.T. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization. J. Orthop. Sci. 2013, 18, https://doi.org/10.1007/s00776-012-0349-y.

Jo, C.H.; Lee, Y.G.; Shin, W.H.; Kim, H.; Chai, J.W.; Jeong, E.C.; Kim, J.E.; Shim, H.; Shin, J.S.; Shin, I.S.; et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 2014, 32, https://doi.org/10.1002/stem.1634.

Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells. J. Cell. Mol. Med. 2008, 12, https://doi.org/10.1111/j.1582-4934.2008.00278.x.

Jin, E.S.; Min, J.; Jeon, S.R.; Choi, K.H.; Jeong, J.H. Analysis of molecular expression in adipose tissue-derived mesenchymal stem cells: prospects for use in the treatment of intervertebral disc degeneration. J. Korean Neurosurg. Soc. 2013, 53, https://doi.org/10.3340/jkns.2013.53.4.207.

Clarke, L.E.; McConnell, J.C.; Sherratt, M.J.; Derby, B.; Richardson, S.M.; Hoyland, J.A. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res. Ther. 2014, 16, https://doi.org/10.1186/ar4505.

Han, Z.; Wang, J.; Gao, L.; Wang, Q.; Wu, J. Aberrantly expressed messenger RNAs and long noncoding RNAs in degenerative nucleus pulposus cells co-cultured with adipose-derived mesenchymal stem cells. Arthritis Res. Ther. 2018, 20, https://doi.org/10.1186/s13075-018-1677-x.

Dai, X.; Guan, Y.; Zhang, Z.; Xiong, Y.; Liu, C.; Li, H.; Liu, B. Comparison of the differentiation abilities of bone marrow‑derived mesenchymal stem cells and adipose‑derived mesenchymal stem cells toward nucleus pulposus‑like cells in three‑dimensional culture. Exp. Ther. Med. 2021, 22, https://doi.org/10.3892/etm.2021.10450.

Sun, Z.; Luo, B.; Liu, Z.H.; Samartzis, D.; Liu, Z.; Gao, B.; Huang, L.; Luo, Z.J. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy. Int. J. Biol. Sci. 2015, 11, https://doi.org/10.7150/ijbs.10598.

HAN, Z.; WANG, Q.; WU, X.; WANG, J.; GAO, L.; GUO, R.; WU, J. Comprehensive RNA expression profile of therapeutic adipose-derived mesenchymal stem cells co-cultured with degenerative nucleus pulposus cells. Mol. Med. Rep. 2021, 23, https://doi.org/10.3892/mmr.2021.11824.

Ganey, T.; Hutton, W.C.; Moseley, T.; Hedrick, M.; Meisel, H.J. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila. Pa. 1976). 2009, 34, https://doi.org/10.1097/BRS.0b013e3181a54157.

Marfia, G.; Campan

Comments (0)

No login
gif