Ræder S, Klyve P, Utheim TP. (2019). [Dry eye disease– diagnosis and treatment]. Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke 139(11).
Markoulli M, Chandramohan N, Papas EB. (2021). Photobiomodulation (low-level light therapy) and dry eye disease. Clin Exp Optom 1–6.
Matsuda Y, Machida M, Nakagami Y, Nakajima T, Azuma M. NFE2L2 activator RS9 protects against corneal epithelial cell damage in dry eye models. PLoS ONE. 2020;15(4):e0229421.
Article CAS PubMed PubMed Central Google Scholar
Chen H, Gan X, Li Y, Gu J, Liu Y, Deng Y, Wang X, Hong Y, Hu Y, Su L, Chi W. NLRP12- and NLRC4-mediated corneal epithelial pyroptosis is driven by GSDMD cleavage accompanied by IL-33 processing in dry eye. Ocul Surf. 2020;18(4):783–94.
Fakih D, Zhao Z, Nicolle P, Reboussin E, Joubert F, Luzu J, Labbé A, Rostène W, Baudouin C, Mélik Parsadaniantz S, Réaux-Le Goazigo A. Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflamm. 2019;16(1):268.
Zhao H, Li Q, Ye M, Yu J. Tear Luminex Analysis in Dry Eye patients. Med Sci Monitor: Int Med J Experimental Clin Res. 2018;24:7595–602.
Akpek EK, Wu HY, Karakus S, Zhang Q, Masli S. Differential diagnosis of Sjögren Versus Non-Sjögren Dry Eye through tear Film biomarkers. Cornea. 2020;39(8):991–7.
Grosskreutz CL, Hockey HU, Serra D, Dryja TP. (2015). Dry Eye signs and symptoms persist during systemic neutralization of IL-1β by Canakinumab or IL-17A by Secukinumab. Cornea. 34(12):1551–6.
Chen Y, Zhang X, Yang L, Li M, Li B, Wang W, Sheng M. Decreased PPAR-γ expression in the conjunctiva and increased expression of TNF-α and IL-1β in the conjunctiva and tear fluid of dry eye mice. Mol Med Rep. 2014;9(5):2015–23.
Article CAS PubMed Google Scholar
Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836–52.
Article CAS PubMed PubMed Central Google Scholar
Rassi DM, De Paiva CS, Dias LC, Módulo CM, Adriano L, Fantucci MZ, Rocha EM. Review: MicroRNAS in ocular surface and dry eye diseases. Ocul Surf. 2017;15(4):660–9.
Xu WD, Lu MM, Pan HF, Ye D. Q.(2012). Association of MicroRNA-146a with autoimmune diseases. Inflammation. 35(4):1525–9.
Yang B, Ni J, Long H, Huang J, Yang C, Huang X. IL-1β-induced miR-34a up-regulation inhibits Cyr61 to modulate osteoarthritis chondrocyte proliferation through ADAMTS-4. J Cell Biochem. 2018;119(10):7959–70.
Article CAS PubMed Google Scholar
Sun Y, Zhou S, Shi Y, Zhou Y, Zhang Y, Liu K, Zhu Y, Han X. Inhibition of miR-153, an IL-1β-responsive miRNA, prevents beta cell failure and inflammation-associated diabetes. Metab Clin Exp. 2020;111:154335.
Article CAS PubMed Google Scholar
Wierzbicki PM, Klacz J, Kotulak-Chrzaszcz A, Wronska A, Stanislawowski M, Rybarczyk A, Ludziejewska A, Kmiec Z, Matuszewski M. Prognostic significance of VHL, HIF1A, HIF2A, VEGFA and p53 expression in patients with clear–cell renal cell carcinoma treated with sunitinib as first–line treatment. Int J Oncol. 2019;55(2):371–90.
CAS PubMed PubMed Central Google Scholar
Fang JQ, Ou Q, Pan J, Fang J, Zhang DY, Qiu MQ, Li YQ, Wang XH, Yang XY, Chi Z, Gao W, Guo JP, Miethke T. Pan J. P.(2021). TcpC inhibits toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88. PLoS pathogens 17(3):e1009481.
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Delivery. 2022;29(1):837–55.
Article CAS PubMed PubMed Central Google Scholar
Choi H, Kwon J, Cho MS, Sun Y, Zheng X, Wang J, Bouker KB, Casey JL, Atkins MB, Toretsky J, Han C. Targeting DDX3X triggers Antitumor Immunity via a dsRNA-Mediated tumor-intrinsic type I Interferon Response. Cancer Res. 2021;81(13):3607–20.
Article CAS PubMed PubMed Central Google Scholar
Craig J, Nichols K, Akpek E, Caffery B, Dua H, Joo C, Liu Z, Nelson J, Nichols J, Tsubota K, Stapleton F. (2017). TFOS DEWS II definition and classification report. Ocul Surf.15(3):276–83.
Yamaguchi T. Inflammatory response in Dry Eye. Investig Ophthalmol Vis Sci. 2018;59(14):Des192–9.
Nelson J, Farris R. Sodium hyaluronate and polyvinyl alcohol artificial tear preparations. A comparison in patients with keratoconjunctivitis sicca. Archives Ophthalmol (Chicago Ill: 1960). 1988;106(4):484–7.
López-Cano J, González-Cela-Casamayor M, Andrés-Guerrero V, Herrero-Vanrell R, Benítez-Del-Castillo J, Molina-Martínez I. Combined hyperosmolarity and inflammatory conditions in stressed human corneal epithelial cells and macrophages to evaluate osmoprotective agents as potential DED treatments. Exp Eye Res. 2021;211:108723.
You H, Wang L, Meng H, Huang C, Fang G, Li J. Pyroptosis: shedding light on the mechanisms and links with cancers. Front Immunol. 2023;14:1290885.
Article CAS PubMed PubMed Central Google Scholar
Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011;22(4):189–95.
Article CAS PubMed PubMed Central Google Scholar
Kovacs SB, Miao EA. Gasdermins: effectors of Pyroptosis. Trends Cell Biol. 2017;27(9):673–84.
Article CAS PubMed PubMed Central Google Scholar
Xu YJ, Zheng L, Hu YW, Wang Q. Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta. 2018;476:28–37.
Article CAS PubMed Google Scholar
Roda M, Corazza I, Bacchi Reggiani ML, Pellegrini M, Taroni L, Giannaccare G, Versura P. (2020). Dry Eye Disease and Tear Cytokine Levels-A Meta-Analysis. Int J Mol Sci. 21(9).
Dai Y, Zhang J, Xiang J, Li Y, Wu D, Xu J. Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 2019;21:101093.
Article CAS PubMed Google Scholar
Li J, Yang K, Pan X, Peng H, Hou C, Xiao J, Wang Q. Long noncoding RNA MIAT regulates hyperosmotic stress-Induced corneal epithelial cell Injury via inhibiting the caspase-1-Dependent pyroptosis and apoptosis in Dry Eye Disease. J Inflamm Res. 2022;15:3269–83.
Article PubMed PubMed Central Google Scholar
Iacona JR, Lutz CS. miR-146a-5p: expression, regulation, and functions in cancer.Wiley. Interdisciplinary Reviews RNA. 2019;10(4):e1533.
Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, Li J, Liu L, Wang C. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 2020;10(21):9561–78.
Article CAS PubMed PubMed Central Google Scholar
Zhang HL, Li L, Cheng CJ, Sun XC. Expression of miR-146a-5p in patients with intracranial aneurysms and its association with prognosis. Eur Rev Med Pharmacol Sci. 2018;22(3):726–30.
Sun HY, Lv AK, Yao H. (2017). Relationship of miRNA-146a to primary Sjögren’s syndrome and to systemic lupus erythematosus: a meta-analysis. Rheumatology International. 37(8):1311–6.
Wang X, Xin S, Wang Y, Ju D, Wu Q, Qiu Y, Niu X, Liu W, Li J, Ji P. (2021). MicroRNA-146a-5p enhances T helper 17 cell differentiation via decreasing a disintegrin and metalloprotease 17 level in primary sjögren’s syndrome. Bioengineered 12(1):310–24.
Jiang Z, Yin X, Wang M, Wang Y, Li F, Gao Y, Han G, Gao Z, Wang Z. β-Hydroxybutyrate alleviates pyroptosis in MPP/MPTP-induced Parkinson’s disease models via inhibiting STAT3/NLRP3/GSDMD pathway. Int Immunopharmacol. 2022;113:109451.
Article CAS PubMed Google Scholar
Jiang Z, Yin X, Wang M, Wang Y, Li F, Gao Y, Han G, Gao Z, Wang Z. (2022). β-Hydroxybutyrate alleviates pyroptosis in MPP+/MPTP-induced Parkinson’s disease models via inhibiting STAT3/NLRP3/GSDMD pathway. International Immunopharmacology 113(Pt B):109451.
Yao R, Chen Y, Hao H, Guo Z, Cheng X, Ma Y, Ji Q, Yang X, Wang Y, Li X, Wang Z. Pathogenic effects of inhibition of mTORC1/STAT3 axis facilitates Staphylococcus aureus-induced pyroptosis in human macrophages. Cell Communication Signaling: CCS. 2020;18(1):187.
Article CAS PubMed PubMed Central Google Scholar
Okuma A, Hoshino K, Ohba T, Fukushi S, Aiba S, Akira S, Ono M, Kaisho T, Muta T. Enhanced apoptosis by disruption of the STAT3-IκB-ζ signaling pathway in epithelial cells induces Sjögren’s syndrome-like. Autoimmune Disease Immun. 2013;38(3):450–60.
Wang X, Zhang S, Dong M, Li Y, Zhou Q, Yang L. The proinflammatory cytokines IL-1β and TNF-α modulate corneal epithelial wound healing through p16(Ink4a) suppressing STAT3 activity. J Cell Physiol. 2020;235(12):10081–93.
Article CAS PubMed Google Scholar
Qu M, Qi X, Wang Q, Wan L, Li J, Li W, Li Y, Zhou Q. Therapeutic effects of STAT3 inhibition on experimental murine Dry Eye. Investig Ophthalmol Vis Sci. 2019;60(12):3776–85.
Comments (0)