Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).
Article CAS PubMed PubMed Central Google Scholar
Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).
Article CAS PubMed Google Scholar
Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).
Article CAS PubMed Google Scholar
Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012).
Esswein, A. J. & Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 107, 4022–4047 (2007).
Article CAS PubMed Google Scholar
Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).
Article CAS PubMed Google Scholar
Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).
Ashford, D. L. et al. Molecular chromophore–catalyst assemblies for solar fuel applications. Chem. Rev. 115, 13006–13049 (2015).
Article CAS PubMed Google Scholar
Brereton, K. R., Bonn, A. G. & Miller, A. J. M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett. 3, 1128–1136 (2018).
Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).
Article CAS PubMed Google Scholar
Costentin, C., Dridi, H. & Savéant, J.-M. Molecular catalysis of H2 evolution: diagnosing heterolytic versus homolytic pathways. J. Am. Chem. Soc. 136, 13727–13734 (2014).
Article CAS PubMed Google Scholar
Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).
Article CAS PubMed Google Scholar
Valdez, C. N., Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proc. Natl Acad. Sci. USA 109, 15589–15593 (2012).
Article CAS PubMed PubMed Central Google Scholar
Han, Y. et al. Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen‐evolution reaction. Angew. Chem. Int. Ed. 55, 5457–5462 (2016).
Guo, X. et al. Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect. Angew. Chem. Int. Ed. 59, 8941–8946 (2020).
Pitman, C. L. & Miller, A. J. M. Molecular photoelectrocatalysts for visible light-driven hydrogen evolution from neutral water. ACS Catal. 4, 2727–2733 (2014).
Stratakes, B. M. & Miller, A. J. M. H2 evolution at an electrochemical ‘underpotential’ with an iridium-based molecular photoelectrocatalyst. ACS Catal. 10, 9006–9018 (2020).
Rivier, L. et al. Photoproduction of hydrogen by decamethylruthenocene combined with electrochemical recycling. Angew. Chem. Int. Ed. 56, 2324–2327 (2017).
Rivier, L. et al. Mechanistic study on the photogeneration of hydrogen by decamethylruthenocene. Chem. Eur. J. 25, 12769–12779 (2019).
Article CAS PubMed Google Scholar
Huang, J., Sun, J., Wu, Y. & Turro, C. Dirhodium(II,II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light. J. Am. Chem. Soc. 143, 1610–1617 (2021).
Article CAS PubMed Google Scholar
Chambers, M. B., Kurtz, D. A., Pitman, C. L., Brennaman, M. K. & Miller, A. J. M. Efficient photochemical dihydrogen generation initiated by a bimetallic self-quenching mechanism. J. Am. Chem. Soc. 138, 13509–13512 (2016).
Article CAS PubMed Google Scholar
Stratakes, B. M., Dempsey, J. L. & Miller, A. J. M. Determining the overpotential of electrochemical fuel synthesis mediated by molecular catalysts: recommended practices, standard reduction potentials, and challenges. ChemElectroChem 8, 4161–4180 (2021).
Dadci, L. et al. π-Arene aqua complexes of cobalt, rhodium, iridium, and ruthenium: preparation, structure, and kinetics of water exchange and water substitution. Inorg. Chem. 34, 306–315 (1995).
Pitman, C. L., Brereton, K. R. & Miller, A. J. M. Aqueous hydricity of late metal catalysts as a continuum tuned by ligands and the medium. J. Am. Chem. Soc. 138, 2252–2260 (2016).
Article CAS PubMed PubMed Central Google Scholar
Rountree, E. S., McCarthy, B. D., Eisenhart, T. T. & Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 53, 9983–10002 (2014).
Article CAS PubMed Google Scholar
Wadsworth, B. L., Beiler, A. M., Khusnutdinova, D., Reyes Cruz, E. A. & Moore, G. F. Interplay between light flux, quantum efficiency, and turnover frequency in molecular-modified photoelectrosynthetic assemblies. J. Am. Chem. Soc. 141, 15932–15941 (2019).
Article CAS PubMed Google Scholar
Nguyen, N. P., Wadsworth, B. L., Nishiori, D., Reyes Cruz, E. A. & Moore, G. F. Understanding and controlling the performance-limiting steps of catalyst-modified semiconductors. J. Phys. Chem. Lett. 12, 199–203 (2021).
Article CAS PubMed Google Scholar
Delahay, P. & Stiehl, G. L. Theory of catalytic polarographic currents. J. Am. Chem. Soc. 74, 3500–3505 (1952).
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).
Costentin, C., Passard, G. & Savéant, J.-M. Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 137, 5461–5467 (2015).
Article CAS PubMed Google Scholar
Weberg, A. B., Murphy, R. P. & Tomson, N. C. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chem. Sci. 13, 5432–5446 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jiang, X. Hydrophobic-lipophilic interactions. Aggregation and self-coiling of organic molecules. Acc. Chem. Res. 21, 362–367 (1988).
Blesic, M. et al. Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem. 9, 481–490 (2007).
Keijer, T., Bouwens, T., Hessels, J. & Reek, J. N. H. Supramolecular strategies in artificial photosynthesis. Chem. Sci. 12, 50–70 (2021).
Pannwitz, A. et al. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chem. Soc. Rev. 50, 4833–4855 (2021).
Article CAS PubMed Google Scholar
Wang, Y.-H. et al. Brønsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 5, 1024–1034 (2019).
Article CAS PubMed PubMed Central Google Scholar
Martin, D. J., Wise, C. F., Pegis, M. L. & Mayer, J. M. Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O2 reduction. Acc. Chem. Res. 53, 1056–1065 (2020).
Article CAS PubMed PubMed Central Google Scholar
Nie, W. & McCrory, C. C. L. Strategies for breaking molecular scaling relationships for the electrochemical CO2 reduction reaction. Dalton Trans. 51, 6993–7010 (2022).
Article CAS PubMed Google Scholar
Boulas, P. L., Go, M. & Echegoyen, L. Electrochemistry of supramolecular systems. Angew. Chem. Int. Ed. 37, 216–247 (1998).
Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).
Comments (0)