BridGE: a pathway-based analysis tool for detecting genetic interactions from GWAS

Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

Article  CAS  PubMed  Google Scholar 

Phillips, P. C. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cordell, H. J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 10, 392–404 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackay, T. F. & Moore, J. H. Why epistasis is important for tackling complex human disease genetics. Genome Med. 6, 42 (2014).

Article  PubMed Central  Google Scholar 

Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, X. et al. SHEsisEpi, a GPU-enhanced genome-wide SNP–SNP interaction scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar disorder. Cell Res. 20, 854–857 (2010).

Article  PubMed  Google Scholar 

Schüpbach, T., Xenarios, I., Bergmann, S. & Kapur, K. FastEpistasis: a high performance computing solution for quantitative trait epistasis. Bioinformatics 26, 1468–1469 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Wan, X. et al. BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87, 325–340 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yung, L. S., Yang, C., Wan, X. & Yu, W. GBOOST: a GPU-based tool for detecting gene–gene interactions in genome-wide case control studies. Bioinformatics 27, 1309–1310 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goudey, B. et al. GWIS-model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. BMC Genom. 14, 1–18 (2013).

Article  Google Scholar 

Wang, X. et al. ELSSI: parallel SNP–SNP interactions detection by ensemble multi-type detectors. Brief. Bioinform. 23, bbac213 (2022).

Article  PubMed  Google Scholar 

Chatelain, C., Durand, G., Thuillier, V. & Augé, F. Performance of epistasis detection methods in semi-simulated GWAS. BMC Bioinform. 19, 1–17 (2018).

Article  Google Scholar 

Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wang, W. et al. Pathway-based discovery of genetic interactions in breast cancer. PLoS Genet. 13, e1006973 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Fang, G. et al. Discovering genetic interactions bridging pathways in genome-wide association studies. Nat. Commun. 10, 4274 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ueki, M. & Cordell, H. J. Improved statistics for genome-wide interaction analysis. PLoS Genet. 8, e1002625 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

Article  CAS  PubMed  Google Scholar 

Hallacli, E. et al. The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 185, 2035–2056.e33 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genome-wide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, N. C. et al. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Min. 5, 9 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey, A. et al. Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder. Transl. Psychiatry 2, e154–e154 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, L. et al. Knowledge-driven analysis identifies a gene–gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations. PLoS Genet. 8, e1002714 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, L., Clark, A. G. & Keinan, A. Gene-based testing of interactions in association studies of quantitative traits. PLoS Genet. 9, e1003321 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, X. et al. Analysis pipeline for the epistasis search–statistical versus biological filtering. Front. Genet. 5, 106 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Brossard, M. et al. Integrated pathway and epistasis analysis reveals interactive effect of genetic variants at TERF1 and AFAP1L2 loci on melanoma risk. Int. J. Cancer 137, 1901–1909 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra, I. et al. Reverse pathway genetic approach identifies epistasis in autism spectrum disorders. PLoS Genet. 13, e1006516 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Chen, L. S. et al. Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. Am. J. Hum. Genet. 86, 860–871 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, J., Gupta, S., Seielstad, M., Liu, J. & Thalamuthu, A. Pathway-based analysis using reduced gene subsets in genome-wide association studies. BMC Bioinform. 12, 1–14 (2011).

Article  Google Scholar 

Huang, A., Martin, E. R., Vance, J. M. & Cai, X. Detecting genetic interactions in pathway‐based genome‐wide association studies. Genet. Epidemiol. 38, 300–309 (2014).

Article  PubMed  Google Scholar 

Ritchie, M. D. Large-scale analysis of genetic and clinical patient data. Annu. Rev. Biomed. Data Sci. 1, 263–274 (2018).

Article  Google Scholar 

Silberstein, M., Nesbit, N., Cai, J. & Lee, P. H. Pathway analysis for genome-wide genetic variation data: analytic principles, latest developments, and new opportunities. J. Genet. Genom. 48, 173–183 (2021).

Article  Google Scholar 

Cui, T. et al. Gene–gene interaction detection with deep learning. Commun. Biol. 5, 1238 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Liu, L. et al. Using machine learning to identify gene interaction networks associated with breast cancer. BMC Cancer 22, 1070 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Consortium, G. P. A global reference for human genetic variation. Nature 526, 68 (2015).

Article  Google Scholar 

Consortium, I. P. D. G. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease:

Comments (0)

No login
gif