Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
Article CAS PubMed PubMed Central Google Scholar
Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).
Article CAS PubMed PubMed Central Google Scholar
Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).
Article CAS PubMed Google Scholar
Phillips, P. C. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).
Article CAS PubMed PubMed Central Google Scholar
Cordell, H. J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 10, 392–404 (2009).
Article CAS PubMed PubMed Central Google Scholar
Mackay, T. F. & Moore, J. H. Why epistasis is important for tackling complex human disease genetics. Genome Med. 6, 42 (2014).
Article PubMed Central Google Scholar
Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hu, X. et al. SHEsisEpi, a GPU-enhanced genome-wide SNP–SNP interaction scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar disorder. Cell Res. 20, 854–857 (2010).
Schüpbach, T., Xenarios, I., Bergmann, S. & Kapur, K. FastEpistasis: a high performance computing solution for quantitative trait epistasis. Bioinformatics 26, 1468–1469 (2010).
Article PubMed PubMed Central Google Scholar
Wan, X. et al. BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87, 325–340 (2010).
Article CAS PubMed PubMed Central Google Scholar
Yung, L. S., Yang, C., Wan, X. & Yu, W. GBOOST: a GPU-based tool for detecting gene–gene interactions in genome-wide case control studies. Bioinformatics 27, 1309–1310 (2011).
Article CAS PubMed PubMed Central Google Scholar
Goudey, B. et al. GWIS-model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. BMC Genom. 14, 1–18 (2013).
Wang, X. et al. ELSSI: parallel SNP–SNP interactions detection by ensemble multi-type detectors. Brief. Bioinform. 23, bbac213 (2022).
Chatelain, C., Durand, G., Thuillier, V. & Augé, F. Performance of epistasis detection methods in semi-simulated GWAS. BMC Bioinform. 19, 1–17 (2018).
Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).
Article PubMed PubMed Central Google Scholar
Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 (2018).
Article PubMed PubMed Central Google Scholar
Wang, W. et al. Pathway-based discovery of genetic interactions in breast cancer. PLoS Genet. 13, e1006973 (2017).
Article PubMed PubMed Central Google Scholar
Fang, G. et al. Discovering genetic interactions bridging pathways in genome-wide association studies. Nat. Commun. 10, 4274 (2019).
Article PubMed PubMed Central Google Scholar
Ueki, M. & Cordell, H. J. Improved statistics for genome-wide interaction analysis. PLoS Genet. 8, e1002625 (2012).
Article CAS PubMed PubMed Central Google Scholar
Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).
Article CAS PubMed Google Scholar
Hallacli, E. et al. The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 185, 2035–2056.e33 (2022).
Article CAS PubMed PubMed Central Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Article CAS PubMed PubMed Central Google Scholar
Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genome-wide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).
Article CAS PubMed PubMed Central Google Scholar
Kim, N. C. et al. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Min. 5, 9 (2012).
Article CAS PubMed PubMed Central Google Scholar
Pandey, A. et al. Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder. Transl. Psychiatry 2, e154–e154 (2012).
Article CAS PubMed PubMed Central Google Scholar
Ma, L. et al. Knowledge-driven analysis identifies a gene–gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations. PLoS Genet. 8, e1002714 (2012).
Article CAS PubMed PubMed Central Google Scholar
Ma, L., Clark, A. G. & Keinan, A. Gene-based testing of interactions in association studies of quantitative traits. PLoS Genet. 9, e1003321 (2013).
Article CAS PubMed PubMed Central Google Scholar
Sun, X. et al. Analysis pipeline for the epistasis search–statistical versus biological filtering. Front. Genet. 5, 106 (2014).
Article PubMed PubMed Central Google Scholar
Brossard, M. et al. Integrated pathway and epistasis analysis reveals interactive effect of genetic variants at TERF1 and AFAP1L2 loci on melanoma risk. Int. J. Cancer 137, 1901–1909 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mitra, I. et al. Reverse pathway genetic approach identifies epistasis in autism spectrum disorders. PLoS Genet. 13, e1006516 (2017).
Article PubMed PubMed Central Google Scholar
Chen, L. S. et al. Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. Am. J. Hum. Genet. 86, 860–871 (2010).
Article CAS PubMed PubMed Central Google Scholar
Zhao, J., Gupta, S., Seielstad, M., Liu, J. & Thalamuthu, A. Pathway-based analysis using reduced gene subsets in genome-wide association studies. BMC Bioinform. 12, 1–14 (2011).
Huang, A., Martin, E. R., Vance, J. M. & Cai, X. Detecting genetic interactions in pathway‐based genome‐wide association studies. Genet. Epidemiol. 38, 300–309 (2014).
Ritchie, M. D. Large-scale analysis of genetic and clinical patient data. Annu. Rev. Biomed. Data Sci. 1, 263–274 (2018).
Silberstein, M., Nesbit, N., Cai, J. & Lee, P. H. Pathway analysis for genome-wide genetic variation data: analytic principles, latest developments, and new opportunities. J. Genet. Genom. 48, 173–183 (2021).
Cui, T. et al. Gene–gene interaction detection with deep learning. Commun. Biol. 5, 1238 (2022).
Article PubMed PubMed Central Google Scholar
Liu, L. et al. Using machine learning to identify gene interaction networks associated with breast cancer. BMC Cancer 22, 1070 (2022).
Article CAS PubMed PubMed Central Google Scholar
Consortium, G. P. A global reference for human genetic variation. Nature 526, 68 (2015).
Consortium, I. P. D. G. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease:
Comments (0)