Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).
Article CAS PubMed Google Scholar
Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).
Article CAS PubMed PubMed Central Google Scholar
Veninga, V. & Voest, E. E. Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell 39, 1190–1201 (2021).
Article CAS PubMed Google Scholar
Li, R. et al. A pro-inflammatory stem cell niche drives myelofibrosis through a targetable galectin 1 axis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.05.550630 (2023).
Méndez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298 (2020).
Article PubMed PubMed Central Google Scholar
Lucas, D. Structural organization of the bone marrow and its role in hematopoiesis. Curr. Opin. Hematol. 28, 36–42 (2020).
Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).
Article CAS PubMed PubMed Central Google Scholar
Jardine, L. et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 598, 327–331 (2021).
Article CAS PubMed PubMed Central Google Scholar
Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).
Article CAS PubMed PubMed Central Google Scholar
Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).
Article CAS PubMed Google Scholar
Kent, D., Dykstra, B. & Eaves, C. Isolation and assessment of long‐term reconstituting hematopoietic stem cells from adult mouse bone marrow. Curr. Protoc. Stem Cell Biol. 3, 2A.4.1–2A.4.23 (2007).
Bradley, T. & Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44, 287–300 (1966).
Article CAS PubMed Google Scholar
de L, M. et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367, 2305–2315 (2012).
Khan, A. O. et al. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function. Haematologica 1, 243–260 (2022).
Feng, Q. et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Rep. 3, 817–831 (2014).
Ng, E. S. et al. Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta–gonad–mesonephros. Nat. Biotechnol. 34, 1168–1179 (2016).
Article CAS PubMed Google Scholar
Jing, R. et al. EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity. Cell Stem Cell 29, 1181–1196.e6 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cao, X. et al. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives. Stem Cell Rep. 12, 1282–1297 (2019).
Ebrahimi, M. et al. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res. Ther. 11, 483 (2020).
Article CAS PubMed PubMed Central Google Scholar
Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat. Commun. 7, 11208 (2016).
Article CAS PubMed PubMed Central Google Scholar
Khan, A. O. et al. Human bone marrow organoids for disease modelling, discovery and validation of therapeutic targets in hematological malignancies. Cancer Discov. https://doi.org/10.1158/2159-8290.cd-22-0199 (2022).
Zhao, Z. et al. Organoids. Nat. Rev. Methods Prim. 2, 94 (2022).
Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).
Article CAS PubMed Google Scholar
Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).
Article CAS PubMed PubMed Central Google Scholar
Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).
Article CAS PubMed PubMed Central Google Scholar
Roy, A. et al. Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Rep. 36, 109698 (2021).
Article CAS PubMed PubMed Central Google Scholar
Raic, A., Naolou, T., Mohra, A., Chatterjee, C. & Lee-Thedieck, C. 3D models of the bone marrow in health and disease: yesterday, today, and tomorrow. MRS Commun. 9, 37–52 (2019).
Article CAS PubMed Google Scholar
Sharipol, A., Lesch, M. L., Soto, C. A. & Frisch, B. J. Bone marrow microenvironment-on-chip for culture of functional hematopoietic stem cells. Front. Bioeng. Biotechnol. 10, 855777 (2022).
Article PubMed PubMed Central Google Scholar
Bessy, T., Itkin, T. & Passaro, D. Bioengineering the bone marrow vascular niche. Front. Cell Dev. Biol. 9, 645496 (2021).
Article PubMed PubMed Central Google Scholar
Voeltzel, T. et al. A minimal standardized human bone marrow microphysiological system to assess resident cell behavior during normal and pathological processes. Biomater. Sci. 10, 485–498 (2021).
Giger, S. et al. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng. 6, 036101 (2022).
Article CAS PubMed PubMed Central Google Scholar
Fairfield, H. et al. Development of a 3D bone marrow adipose tissue model. Bone 118, 77–88 (2019).
Glaser, D. E. et al. Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials 280, 121245 (2022).
Article CAS PubMed Google Scholar
Chou, D. B. et al. On-chip recapitulation of clinical bone-marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).
Article PubMed PubMed Central Google Scholar
Zhang, S., Wan, Z. & Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip 21, 473–488 (2021).
Article CAS PubMed PubMed Central Google Scholar
Aazmi, A. et al. Engineered vasculature for organ-on-a-chip systems. Engineering 9, 131–147 (2022).
Marturano-Kruik, A. et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc. Natl Acad. Sci. USA 115, 1256–1261 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cuenca, M. V. et al. Engineered 3D vessel-on-chip using hiPSC-derived endothelial and vascular smooth muscle cells. Stem Cell Rep. 16, 2159–2168 (2021).
Byambaa, B. et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv. Healthc. Mater. 6, 1700015 (2017).
Simunovic, F. & Finkenzeller, G. Vascularization strategies in bone tissue engineering. Cells 10, 1749 (2021).
Comments (0)