van Gemmeren, M. & List, B. How and why crowd reviewing works. Synlett 32, 885–891 (2021).
Zhang, Y., Chen, S., Liu, Y. & Wang, Q. Route evaluation and Ritter reaction based synthesis of oxazoline acaricide candidates FET-II-L and NK-12. Org. Process Res. Dev. 24, 216–227 (2020).
Boda, K., Seidel, T. & Gasteiger, J. Structure and reaction based evaluation of synthetic accessibility. J. Comput. Aided Mol. Des. 21, 311–325 (2007).
Article CAS PubMed Google Scholar
Laird, T. Editorial reproducibility of results. Org. Process Res. Dev. 18, 921 (2014).
Wethman, R. et al. An under-appreciated source of reproducibility issues in cross-coupling: solid-state decomposition of primary sodium alkoxides in air. ACS Catal. 11, 502–508 (2021).
Kirklin, W. A. & Becker, W. W. Standardization in chemical industry. Anal. Chem. 23, 1556–1558 (1951).
Schnitzer, T. et al. How subtle changes can make a difference: reproducibility in complex supramolecular systems. Angew. Chem. Int. Ed. 134, e202206738 (2022).
Tiokhin, L. et al. Honest signaling in academic publishing. PLoS ONE 16, e0246675 (2021).
Article CAS PubMed PubMed Central Google Scholar
Cook, C. Publication fraud, dishonesty and deceit. J. Man. Manip. Ther. 20, 57–58 (2012).
Article PubMed PubMed Central Google Scholar
Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).
Schultz, D. & Campeau, L.-C. Harder, better, faster. Nat. Chem. 12, 661–664 (2020).
Bergman, R. G. & Danheiser, R. L. Reproducibility in chemical research. Angew. Chem. Int. Ed. 55, 12548–12549 (2016).
Scott, S. L., Gunnoe, T. B., Fornasiero, P. & Crudden, C. M. To err is human; to reproduce takes time. ACS Catal. 12, 3644–3650 (2022).
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).
Article CAS PubMed Google Scholar
Kozlowski, M. C. On the topic of substrate scope. Org. Lett. 24, 7247–7249 (2022).
Article CAS PubMed Google Scholar
Kozlov, M. Revealed: the millions of dollars in time wasted making papers fit journal guidelines. Nature https://doi.org/10.1038/d41586-023-01846-9 (2023).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Article PubMed PubMed Central Google Scholar
Kearnes, S. M. et al. The Open Reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).
Article CAS PubMed Google Scholar
Tremouilhac, P. et al. The repository Chemotion: infrastructure for sustainable research in chemistry. Angew. Chem. Int. Ed. 59, 22771–22778 (2020).
Crystal‐Ornelas, R. et al. A guide to using GitHub for developing and versioning data standards and reporting formats. Earth Space Sci. 8, e2021EA001797 (2021).
Strieth-Kalthoff, F. et al. Machine learning for chemical reactivity: the importance of failed experiments. Angew. Chem. Int. Ed. 61, e202204647 (2022).
Schleinitz, J. et al. Machine learning yield prediction from NiCOlit, a small-size literature data set of Nickel catalyzed C-O couplings. J. Am. Chem. Soc. 144, 14722–14730 (2022).
Article CAS PubMed Google Scholar
Svejstrup, T. D. et al. Effects of light intensity and reaction temperature on photoreactions in commercial photoreactors. ChemPhotoChem 5, 808–814 (2021).
Wills, A. G., Poole, D. L., Alder, C. M. & Reid, M. A mechanistic and cautionary case study on the use of alternating potential in electrochemical reactions. ChemElectroChem 7, 2771–2776 (2020).
Kingston, C. et al. A survival guide for the ‘Electro-curious’. Acc. Chem. Res. 53, 72–83 (2020).
Article CAS PubMed Google Scholar
Leech, M. C. & Lam, K. A practical guide to electrosynthesis. Nat. Rev. Chem. 6, 275–286 (2022).
Beil, S. B., Pollok, D. & Waldvogel, S. R. Reproducibility in electroorganic synthesis—myths and misunderstandings. Angew. Chem. Int. Ed. 60, 14750–14759 (2021).
Hone, C. A. & Kappe, C. O. Towards the standardization of flow chemistry protocols for organic reactions. Chem. Methods 1, 454–467 (2021).
Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).
Article CAS PubMed Google Scholar
Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).
Article CAS PubMed Google Scholar
Dreher, S. D. & Krska, S. W. Chemistry informer libraries: conception, early experience and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).
Article CAS PubMed Google Scholar
Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).
Article CAS PubMed PubMed Central Google Scholar
Bess, E. N., Bischoff, A. J. & Sigman, M. S. Designer substrate library for quantitative, predictive modeling of reaction performance. Proc. Natl Acad. Sci. USA 111, 14698–14703 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kariofillis, S. K. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).
Article CAS PubMed PubMed Central Google Scholar
Stevens, J. M. et al. Advancing base metal catalysis through data science: insight and predictive models for Ni-catalyzed borylation through supervised machine learning. Organometallics 41, 1847–1864 (2022).
Gensch, T. et al. Design and application of a screening set for monophosphine ligands in cross-coupling. ACS Catal. 12, 7773–7780 (2022).
Calvo-Flores, F. G. Sustainable chemistry metrics. Chem. Sus. Chem 2, 905–919 (2009).
Constable, D. J. C., Curzons, A. D. & Cunningham, V. L. Metrics to ‘green’ chemistry—which are the best? Green Chem. 4, 521–527 (2002).
Curzons, A. D., Mortimer, D. N., Constable, D. J. C. & Cunningham, V. L. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—a corporate perspective. Green Chem. 3, 1–6 (2001).
van Aken, K., Strekowski, L. & Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2, 3 (2006).
PubMed PubMed Central Google Scholar
Anastas, P. T. & Lankey, R. L. Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem. 2, 289–295 (2000).
Sheldon, R. A. Metrics of green chemistry and sustainability: past, present and future. ACS Sustain. Chem. Eng. 6, 32–48 (2018).
Anastas, P. T. & Warner, J. C. Green Chemistry. Theory and Practice 1st edn (Oxford Univ. Press, 1998).
Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).
Article CAS PubMed Google Scholar
Trost, B. M. On inventing reactions for atom economy. Acc. Chem. Res. 35, 695–705 (2002).
Comments (0)