Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
Article CAS PubMed PubMed Central Google Scholar
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Article CAS PubMed Google Scholar
Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).
Article CAS PubMed Google Scholar
Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).
Article CAS PubMed Google Scholar
Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).
Article CAS PubMed Google Scholar
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Martin, E. W. & Holehouse, A. S. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg. Top. Life Sci. 4, 307–329 (2020).
Article CAS PubMed Google Scholar
Schuster, B. S. et al. Biomolecular condensates: sequence determinants of phase separation, microstructural organization, enzymatic activity and material properties. J. Phys. Chem. B 125, 3441–3451 (2021).
Article CAS PubMed PubMed Central Google Scholar
Borcherds, W., Bremer, A., Borgia, M. B. & Mittag, T. How do intrinsically disordered protein regions encode a driving force for liquid–liquid phase separation? Curr. Opin. Struct. Biol. 67, 41–50 (2021).
Article CAS PubMed Google Scholar
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
Article CAS PubMed PubMed Central Google Scholar
Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).
Article CAS PubMed PubMed Central Google Scholar
Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, B., Patkar, S. S. & Kiick, K. L. Application of thermoresponsive intrinsically disordered protein polymers in nanostructured and microstructured materials. Macromol. Biosci. 21, 2100129 (2021).
Garcia Garcia, C., Patkar, S. S., Jovic, N., Mittal, J. & Kiick, K. L. Alteration of microstructure in biopolymeric hydrogels via compositional modification of resilin-like polypeptides. ACS Biomater. Sci. Eng. 7, 4244–4257 (2021).
Article CAS PubMed Google Scholar
Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).
Article CAS PubMed PubMed Central Google Scholar
Schuster, B. S. et al. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).
Article PubMed PubMed Central Google Scholar
Simon, J. R., Eghtesadi, S. A., Dzuricky, M., You, L. & Chilkoti, A. Engineered ribonucleoprotein granules inhibit translation in protocells. Mol. Cell 75, 66–75 (2019).
Article CAS PubMed PubMed Central Google Scholar
Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).
Article CAS PubMed PubMed Central Google Scholar
Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).
Article CAS PubMed PubMed Central Google Scholar
Vernon, R. M. et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).
Article PubMed PubMed Central Google Scholar
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).
Article CAS PubMed PubMed Central Google Scholar
Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).
Article CAS PubMed PubMed Central Google Scholar
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).
Article CAS PubMed PubMed Central Google Scholar
Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).
Article CAS PubMed PubMed Central Google Scholar
Murthy, A. C. et al. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat. Struct. Mol. Biol. 28, 923–935 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).
Article CAS PubMed Google Scholar
Martin, E. W. & Mittag, T. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 57, 2478–2487 (2018).
Article CAS PubMed Google Scholar
Tompa, P., Schad, E., Tantos, A. & Kalmar, L. Intrinsically disordered proteins: emerging interaction specialists. Curr. Opin. Struct. Biol. 35, 49–59 (2015).
Article CAS PubMed Google Scholar
Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292, 19110–19120 (2017).
Article CAS PubMed PubMed Central Google Scholar
Holehouse, A. S., Ginell, G. M., Griffith, D. & Boke, E. Clustering of aromatic residues in prion-like domains can tune the formation, state and organization of biomolecular condensates: published as part of the Biochemistry virtual special issue ‘Protein condensates’. Biochemistry 60, 3566–3581 (2021).
Article CAS PubMed Google Scholar
Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).
Article CAS PubMed PubMed Central Google Scholar
Devarajan, D. S. et al. Effect of charge distribution on the dynamics of polyampholytic disordered proteins. Macromolecules 55, 8987–8997 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rekhi, S. et al. Role of strong localized vs weak distributed interactions in disordered protein phase separation. J. Phys. Chem. B 127, 3829–3838 (2023).
Article CAS PubMed PubMed Central Google Scholar
Dai, Y. et al. Programmable synthetic biomolecular condensates for cellular control. Nat. Chem. Biol. 19, 518–528 (2023).
Article CAS PubMed PubMed Central Google Scholar
Cai, H., Vernon, R. M. & Forman-Kay, J. D. An interpretable machine-learning algorithm to predict disordered protein phase separation based on biophysical interactions. Biomolecules 12, 1131 (2022).
Comments (0)