TOB1 and TOB2 mark distinct RNA processing granules in differentiating lens fiber cells

Anand D, Kakrana A, Siddam AD, Huang H, Saadi I, Lachke SA (2018) RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery. Hum Genet 137(11–12):941–954. https://doi.org/10.1007/s00439-018-1958-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10(6):430–436. https://doi.org/10.1038/nrm2694

Article  CAS  PubMed  Google Scholar 

Basu S, Rajakaruna S, De Arcangelis A, Zhang L, Georges-Labouesse E, Menko AS (2014a) α6 integrin transactivates insulin-like growth factor receptor-1 (IGF-1R) to regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem 289(7):3842–3855. https://doi.org/10.1074/jbc.M113.515254

Article  CAS  PubMed  Google Scholar 

Basu S, Rajakaruna S, Reyes B, Van Bockstaele E, Menko AS (2014b) Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells. Autophagy 10(7):1193–1211. https://doi.org/10.4161/auto.28768

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boswell BA, Musil LS (2015) Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell 26(13):2561–2572. https://doi.org/10.1091/mbc.E15-02-0117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boswell BA, Overbeek PA, Musil LS (2008) Essential role of BMPs in FGF-induced secondary lens fiber differentiation. Dev Biol 324(2):202–212. https://doi.org/10.1016/j.ydbio.2008.09.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchan JR (2014) mRNP granules: Assembly, function, and connections with Disease. RNA Biol 11:8

Article  Google Scholar 

Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, de Iongh RU (2008) Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 321(2):420–433

Article  CAS  PubMed  Google Scholar 

Cavalheiro GR, Matos-Rodrigues GE, Gomes AL, Rodrigues PM, Martins RA (2014) c-Myc regulates cell proliferation during lens development. PLoS ONE 9(2):e87182. https://doi.org/10.1371/journal.pone.0087182

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CA, Strouz K, Huang KL, Shyu AB (2020) Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. RNA (New York NY) 26(9):1143–1159. https://doi.org/10.1261/rna.073528.119

Article  CAS  Google Scholar 

Choi JJ, Ting CT, Trogrlic L, Milevski SV, Familari M, Martinez G, de Iongh RU (2014) A role for smoothened during murine lens and cornea development. PLoS ONE 9(9):e108037. https://doi.org/10.1371/journal.pone.0108037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collart MA, Panasenko OO (2012) The Ccr4–not complex. Gene 492(1):42–53. https://doi.org/10.1016/j.gene.2011.09.033

Article  CAS  PubMed  Google Scholar 

Collart MA, Panasenko OO, Nikolaev SI (2013) The Not3/5 subunit of the Ccr4-Not complex: a central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cell Signal 25(4):743–751. https://doi.org/10.1016/j.cellsig.2012.12.018

Article  CAS  PubMed  Google Scholar 

Cvekl A, Ashery-Padan R (2014) The cellular and molecular mechanisms of vertebrate lens development. Development 141(23):4432–4447. https://doi.org/10.1242/dev.107953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cvekl A, Zhang X (2017) Signaling and Gene Regulatory Networks in mammalian Lens Development. Trends Genet 33(10):677–702. https://doi.org/10.1016/j.tig.2017.08.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cvekl A, McGreal R, Liu W (2015) Lens Development and crystallin gene expression. Prog Mol Biol Transl Sci 134:129–167. https://doi.org/10.1016/bs.pmbts.2015.05.001

Article  PubMed  Google Scholar 

D’Ambrogio A, Nagaoka K, Richter JD (2013) Translational control of cell growth and malignancy by the CPEBs. Nat Rev Cancer 13(4):283–290. https://doi.org/10.1038/nrc3485

Article  CAS  PubMed  Google Scholar 

Dash S, Dang CA, Beebe DC, Lachke SA (2015) Deficiency of the RNA binding protein caprin2 causes lens defects and features of Peters anomaly. Dev Dynamics: Official Publication Am Association Anatomists 244(10):1313–1327. https://doi.org/10.1002/dvdy.24303

Article  CAS  Google Scholar 

de Iongh RU, Duncan MK (2014) Growth Factor Signaling in Lens Fiber Differentiation. In: Saika S, Werner L, Lovicu FJ (eds) Lens Epithelium and Posterior Capsular Opacification. Springer Japan, pp 81–104. https://doi.org/10.1007/978-4-431-54300-8_5

de Iongh RU, Lovicu FJ, Overbeek PA, Schneider MD, Joya J, Hardeman ED, McAvoy JW (2001) Requirement for TGFbeta receptor signaling during terminal lens fiber differentiation. Development 128(20):3995–4010

Article  PubMed  Google Scholar 

Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4(9):a012286. https://doi.org/10.1101/cshperspect.a012286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doidge R, Mittal S, Aslam A, Winkler GS (2012a) The anti-proliferative activity of BTG/TOB proteins is mediated via the Caf1a (CNOT7) and Caf1b (CNOT8) deadenylase subunits of the Ccr4-not complex. PLoS ONE 7(12):e51331. https://doi.org/10.1371/journal.pone.0051331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doidge R, Mittal S, Aslam A, Winkler GS (2012b) Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans 40(4):896–901. https://doi.org/10.1042/bst20120074

Article  CAS  PubMed  Google Scholar 

Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CY, Zhong Z, Yamashita Y, Zheng D, Shyu AB (2007) Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 27(22):7791–7801. https://doi.org/10.1128/mcb.01254-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ezzeddine N, Chen CY, Shyu AB (2012) Evidence providing new insights into TOB-promoted deadenylation and supporting a link between TOB’s deadenylation-enhancing and antiproliferative activities. Mol Cell Biol 32(6):1089–1098. https://doi.org/10.1128/mcb.06370-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faulkner-Jones B, Zandy AJ, Bassnett S (2003) RNA stability in terminally differentiating fibre cells of the ocular lens. Exp Eye Res 77(4):463–476

Article  CAS  PubMed  Google Scholar 

Hawse JR, DeAmicis-Tress C, Cowell TL, Kantorow M (2005) Identification of global gene expression differences between human lens epithelial and cortical fiber cells reveals specific genes and their associated pathways important for specialized lens cell functions. Mol Vis 11:274–283

CAS  PubMed  Google Scholar 

Helms MW, Kemming D, Contag CH, Pospisil H, Bartkowiak K, Wang A, Chang SY, Buerger H, Brandt BH (2009) TOB1 is regulated by EGF-dependent HER2 and EGFR signaling, is highly phosphorylated, and indicates poor prognosis in node-negative Breast cancer. Cancer Res 69(12):5049–5056. https://doi.org/10.1158/0008-5472.can-08-4154

Article  CAS  PubMed  Google Scholar 

Ho KJ, Do NL, Otu HH, Dib MJ, Ren X, Enjyoji K, Robson SC, Terwilliger EF, Karp SJ (2010) Tob1 is a constitutively expressed repressor of liver regeneration. J Exp Med 207(6):1197–1208. https://doi.org/10.1084/jem.20092434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoang TV, Kumar PK, Sutharzan S, Tsonis PA, Liang C, Robinson ML (2014) Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing. Mol Vis 20:1491–1517

CAS  PubMed  PubMed Central  Google Scholar 

Hosoda N, Funakoshi Y, Hirasawa M, Yamagishi R, Asano Y, Miyagawa R, Ogami K, Tsujimoto M, Hoshino S (2011) Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J 30(7):1311–1323. https://doi.org/10.1038/emboj.2011.37

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang KL, Chadee AB, Chen CY, Zhang Y, Shyu AB (2013) Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA (New York NY) 19(3):295–305. https://doi.org/10.1261/rna.037317.112

Article  CAS  Google Scholar 

Jain S, Parker R (2013) The discovery and analysis of P bodies. Adv Exp Med Biol 768:23–43. https://doi.org/10.1007/978-1-4614-5107-5_3

Article  CAS  PubMed  Google Scholar 

Jeon P, Ham HJ, Park S, Lee JA (2022) Regulation of Cellular Ribonucleoprotein granules: from Assembly to Degradation via post-translational modification. Cells 11(13).

留言 (0)

沒有登入
gif