Identification of intracellular activation mechanism of rhamnogalacturonan-I type polysaccharide purified from Panax ginseng leaves in macrophages and roles of component sugar chains on activity

Jiang M-H, Zhu L, Jiang J-G (2010) Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 14:1367–1402. https://doi.org/10.1517/14728222.2010.531010

Article  CAS  PubMed  Google Scholar 

Leung M, Liu C, Koon J, Fung K (2006) Polysaccharide biological response modifiers. Immunol Lett 105:101–114. https://doi.org/10.1016/j.imlet.2006.01.009

Article  CAS  PubMed  Google Scholar 

Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5:31–61. https://doi.org/10.1016/j.bcdf.2014.12.001

Article  CAS  Google Scholar 

Yin M, Zhang Y, Li H (2019) Advances in research on immunoregulation of macrophages by plant polysaccharides. Front Immunol 10:145. https://doi.org/10.3389/fimmu.2019.00145

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Shen M, Song Q, Xie J (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183:91–101. https://doi.org/10.1016/j.carbpol.2017.12.009

Article  CAS  PubMed  Google Scholar 

Voragen AG, Coenen G-J, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275. https://doi.org/10.1007/s11224-009-9442-z

Article  CAS  Google Scholar 

Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006

Article  CAS  PubMed  Google Scholar 

Yapo BM (2011) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51:391–413. https://doi.org/10.1080/15583724.2011.615962

Article  CAS  Google Scholar 

Ishii T, Matsunaga T (2001) Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57:969–974. https://doi.org/10.1016/S0031-9422(01)00047-4

Article  CAS  PubMed  Google Scholar 

Park H-R, Park SB, Hong H-D, Suh HJ, Shin K-S (2017) Structural elucidation of anti-metastatic rhamnogalacturonan II from the pectinase digest of citrus peels (Citrus unshiu). Int J Biol Macromol 94:161–169. https://doi.org/10.1016/j.ijbiomac.2016.09.100

Article  CAS  PubMed  Google Scholar 

Yue F, Xu J, Zhang S, Hu X, Wang X, Lü X (2022) Structural features and anticancer mechanisms of pectic polysaccharides: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.04.073

Article  PubMed  Google Scholar 

Li N, Wang C, Georgiev MI, Bajpai VK, Tundis R, Simal-Gandara J, Lu X, Xiao J, Tang X, Qiao X (2021) Advances in dietary polysaccharides as anticancer agents: structure–activity relationship. Trends Food Sci Technol 111:360–377. https://doi.org/10.1016/j.tifs.2021.03.008

Article  CAS  Google Scholar 

Maria-Ferreira D, Dallazen JL, Corso CR, Nascimento AM, Cipriani TR, da Silva Watanabe P, Sant’Ana DMG, Baggio CH, de Paula Werner MF (2021) Rhamnogalacturonan polysaccharide inhibits inflammation and oxidative stress and alleviates visceral pain. J Funct Foods 82:104483. https://doi.org/10.1016/j.jff.2021.104483

Article  CAS  Google Scholar 

Sun L, Ropartz D, Cui L, Shi H, Ralet M-C, Zhou Y (2019) Structural characterization of rhamnogalacturonan domains from Panax ginseng CA Meyer. Carbohydr Polym 203:119–127. https://doi.org/10.1016/j.carbpol.2018.09.045

Article  CAS  PubMed  Google Scholar 

Merheb R, Abdel-Massih RM, Karam MC (2019) Immunomodulatory effect of natural and modified Citrus pectin on cytokine levels in the spleen of BALB/c mice. Int J Biol Macromol 121:1–5. https://doi.org/10.1016/j.ijbiomac.2018.09.189

Article  CAS  PubMed  Google Scholar 

Kwak B-S, Hwang D, Lee SJ, Choi H-J, Park H-Y, Shin K-S (2019) Rhamnogalacturonan-I-type polysaccharide purified from broccoli exerts anti-metastatic activities via innate immune cell activation. J Med Food 22:451–459. https://doi.org/10.1089/jmf.2018.4286

Article  CAS  PubMed  Google Scholar 

Birk R, Gratchev A, Hakiy N, Politz O, Schledzewski K, Guillot P, Orfanos C, Goerdt S (2001) Alternative Aktivierung antigenpräsentierender Zellen Konzept und klinische Bedeutung: Konzept und klinische Bedeutung. Hautarzt 52:193–200. https://doi.org/10.1007/s001050051289

Article  CAS  PubMed  Google Scholar 

Wu F, Zhou C, Zhou D, Ou S, Huang H (2017) Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. J Funct Foods 37:574–585. https://doi.org/10.1016/j.jff.2017.08.030

Article  CAS  Google Scholar 

Galli G, Saleh M (2021) Immunometabolism of macrophages in bacterial infections. Front Cell Infect Microbiol 10:607650. https://doi.org/10.3389/fcimb.2020.607650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng C, Fu H, Shang J, Chen J, Xu X (2018) Dectin-1 mediates the immunoenhancement effect of the polysaccharide from Dictyophora indusiata. Int J Biol Macromol 109:369–374. https://doi.org/10.1016/j.ijbiomac.2017.12.113

Article  CAS  PubMed  Google Scholar 

Wang C-L, Lu C-Y, Pi C-C, Zhuang Y-J, Chu C-L, Liu W-H, Chen C-J (2012) Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med 12:1–10. https://doi.org/10.1186/1472-6882-12-119

Article  CAS  Google Scholar 

Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases—regulating the immune response. Nat Rev Immunol 7:202–212. https://doi.org/10.1038/nri2035

Article  CAS  PubMed  Google Scholar 

Rao KMK (2001) MAP kinase activation in macrophages. J Leukoc Biol 69:3–10. https://doi.org/10.1189/jlb.69.1.3

Article  CAS  PubMed  Google Scholar 

Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:1–9. https://doi.org/10.1038/sigtrans.2017.23

Article  CAS  Google Scholar 

Son S-U, Lee HW, Shin K-S (2023) Immunostimulating activities and anti-cancer efficacy of rhamnogalacturonan-I rich polysaccharide purified from Panax ginseng leaf. Food Biosci 53:102618. https://doi.org/10.1016/j.fbio.2023.102618

Article  CAS  Google Scholar 

Son S-U, Lee SJ, Shin K-S (2022) Immunostimulating and intracellular signaling pathways mechanism on macrophage of rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 217:506–514. https://doi.org/10.1016/j.ijbiomac.2022.07.084

Article  CAS  PubMed  Google Scholar 

Kim HW, Shin M-S, Lee SJ, Park H-R, Jee HS, Yoon TJ, Shin K-S (2019) Signaling pathways associated with macrophage-activating polysaccharides purified from fermented barley. Int J Biol Macromol 131:1084–1091. https://doi.org/10.1016/j.ijbiomac.2019.03.159

Article  CAS  PubMed  Google Scholar 

Lasunskaia EB, Campos MN, de Andrade MR, DaMatta RA, Kipnis TL, Einicker-Lamas M, Da Silva WD (2006) Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. J Leukoc Biol 80:1480–1490. https://doi.org/10.1189/jlb.0106066

Article  CAS  PubMed  Google Scholar 

van Holst G-J, Clarke AE (1985) Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal Biochem 148:446–450. https://doi.org/10.1016/0003-2697(85)90251-9

Article  PubMed  Google Scholar 

Son S-U, Lee SJ, Choi EH, Shin K-S (2022) Clarification of the structural features of Rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 209:923–934. https://doi.org/10.1016/j.ijbiomac.2022.04.045

Article  CAS  PubMed  Google Scholar 

Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Taruya A, Ozaki M, Tanaka A, Mukaida N, Kondo T (2020) Crucial involvement of IL-6 in thrombus resolution in mice via macrophage recruitment and the induction of proteolytic enzymes. Front Immunol 10:3150. https://doi.org/10.3389/fimmu.2019.03150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang KS, Frank DA, Ritz J (2000) Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 95:3183–3190. https://doi.org/10.1182/blood.V95.10.3183

Article  CAS  PubMed  Google Scholar 

Cavalcanti YVN, Brelaz MCA, Neves JKAL, Ferraz JC, Pereira VRA (2012) Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med 2012:745483. https://doi.org/10.1155/2012/745483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kounsar F, Rather MA, Ganai BA, Zargar MA (2011) Immuno-enhancing effects of the herbal extract from Himalayan rhubarb Rheum emodi Wall. ex Meissn. Food Chem 126:967–971. https://doi.org/10.1016/j.foodchem.2010.11.103

留言 (0)

沒有登入
gif