Photoreaction products of extract from the fruiting bodies of Polyozellus multiplex

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Article  CAS  PubMed  Google Scholar 

Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114:5601–5606. https://doi.org/10.1073/pnas.1614680114

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Galloway WRJD, Isidoro-Liobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Com 80. https://doi.org/10.1038/ncomms1081

Kikuti H, Oshima Y (2018) Developments toward the production of diverse natural-product-like compounds: diversity-oriented synthesis and diversity-enhanced extracts. Heterocycles 96:1509–1527. https://doi.org/10.3987/REV-18-885

Article  Google Scholar 

Kikuti H, Kawai K, Nakashiro Y, Yonezawa T, Kawaji K, Kodama E, Oshima Y (2019) Construction of a meroterpenoid-like compounds library based on diversity-enhanced extracts. Chem Eur J 25:1106–1112. https://doi.org/10.1002/chem.201805417

Article  CAS  Google Scholar 

Suzuki Y, Ichinohe K, Sugawara A, Kida S, Murase S, Zhang J, Yamada O, Hattori T, Oshima Y, Kikuti H (2021) Development of indole alkaloid-type dual immune checkpoint inhibitors against CTLA-4 and PD-L1 based on diversity-enhanced extracts. Front Chem 9:766107. https://doi.org/10.3389/fchem.2021.766107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciana CL, Bochet CG (2007) Clean and easy photochemistry. Chimia 61:650–654. https://doi.org/10.2533/chimia.2007.650

Article  CAS  Google Scholar 

Kärkäs MD, Porco JA, Stephenson CRJ (2016) Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem Rev 116:9683–9747. https://doi.org/10.1021/acs.chemrev.5b00760

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann N (2012) Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Photochem Photobiol Sci 11:1613–1641. https://doi.org/10.1039/c2pp25074h

Article  CAS  PubMed  Google Scholar 

Ito S, White FJ, Okunishi E, Aoyama Y, Yamano A, Sato H, Ferrara JD, Jasnowski M, Meyer M (2021) Structure determination of small molecule compounds by an electron diffractometer for 3DED/MicroED. Cryst Eng Comm 23:8622–8630. https://doi.org/10.1039/D1CE01172C

Article  CAS  Google Scholar 

Gemmi M, Mugnaioli E, Gorelik TE, Kolb U, Palatinus L, Boullay P, Hovmoller S, Abrahams JP (2019) 3D Electron diffraction: the nanocrystallography revolution. ACS Cent Sci 5:1315–1329. https://doi.org/10.1021/acscentsci.9b00394

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi S, Kawano T, Nakajima N, Suda Y, Usukhbayar N, Kimura K, Koshino H (2018) Synthesis of polyozellin, a prolyl oligopeptidase inhibitor, and its structural revision. Bioorg Med Chem Lett 28:930–933. https://doi.org/10.1016/j.bmcl.2018.01.054

Article  CAS  PubMed  Google Scholar 

Nakabayashi S, Ishikura A, Fujihara K, Hirabayashi S, Koike S, Sasaki H, Ogasawara Y, Koyama K, Kinoshita K (2022) Inhibition of amyloid-β aggregation by p-terphenyls from the mushroom Polyozellus multiplex and their neuroprotective effects. Heterocycles 104:2025–2036. https://doi.org/10.3987/COM-22-14711

Article  CAS  Google Scholar 

Chon SH, Yang EJ, Lee T, Song KS (2016) β-Secretase (BACE1) inhibitory and neuroprotective effects of p-terphenyls from Polyozellus multiplex. Food Funct 9:3834–3842. https://doi.org/10.1039/C6FO00538A

Article  CAS  Google Scholar 

Clinger JA, Zhang Y, Liu Y, Miller MD, Hall RE, Lanen SGV, Phillips GN Jr, Thorson JS, Elshahawi SI (2021) Structure and function of a dual reductase–dehydratase enzyme system involved in p-terphenyl biosynthesis. ACS Chem Biol 16:2816–2824. https://doi.org/10.1021/acschembio.1c00701

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hainder W, Xu W, Liu M, Wu Y, Thang Y, Wei M, Wang C, Lu L (2020) Structure-activity relationships and potent cytotoxic activities of terphenyllin derivatives from a small compound library. Chem Biodivers 17:e2000207. https://doi.org/10.1002/cbdv.202000207

Article  CAS  Google Scholar 

Zhou G, Zhu T, Che Q, Zhang G, Li D (2021) Structural diversity and biological activity of natural p-terphenyls. Mar Life Sci Technol 4:62–73. https://doi.org/10.1007/s42995-021-00117-8

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Li X, Lou H (2018) Structural and biological diversity of natural p-terphenyls. J Asian Nat Prod Res 20:1–13. https://doi.org/10.1080/10286020.2017.1381089

Article  CAS  PubMed  Google Scholar 

Zhang X, Mou X, Mao N, Hao J, Liu M, Zheng J, Wang C, Gu Y, Shao C (2018) Design, semisynthesis, α-glucosidase inhibitory, cytotoxic, and antibacterial activities of p-terphenyl derivatives. Eur J Med Chem 146:232–244. https://doi.org/10.1016/j.ejmech.2018.01.057

Article  CAS  PubMed  Google Scholar 

Liu J (2006) Natural terphenyls: developments since 1877. Chem Rev 106:2209–2223. https://doi.org/10.1021/cr050248c

Article  CAS  PubMed  Google Scholar 

Gunasekera SP, Gunasekera M, Gunawardana GP, McCarthy P, Burres N (1990) Two new bioactive cyclic peroxides from the marine sponge Plakortis angulospiculatus. J Nat Prod 53:669–674. https://doi.org/10.1021/np50069a021

Article  CAS  Google Scholar 

Jiménez-Romero C, Ortiz I, Vincente J, Vera B, Rodríguez AD, Nam S, Jove R (2010) Bioactive cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J Nat Prod 73:1694–1700. https://doi.org/10.1021/np100461t

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghogare AA, Greer A (2016) Using singlet oxygen to synthesize natural products and drugs. Chem Rev 116:9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726

Article  CAS  PubMed  Google Scholar 

Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/s2053273314026370

Article  ADS  Google Scholar 

Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

Article  ADS  CAS  Google Scholar 

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement, and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

Article  ADS  CAS  Google Scholar 

Fujihara K, Shimoyama T, Kawazu R et al (2020) Amyloid β aggregation inhibitory activity of triterpene saponins from the cactus Stenocereus pruinosus. J Nat Med 75:284–298. https://doi.org/10.1007/s11418-020-01463-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif