The miR-3074/BMP7 axis regulates TGF-β-caused activation of hepatic stellate cells in vitro and CCl4-caused murine liver fibrosis in vivo

Jiao J, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol. 2009;25(3):223–9.

Article  PubMed  PubMed Central  Google Scholar 

Bataller R, Brenner DA. Liver fibrosis. J Clin Investig. 2005;115(2):209–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellis EL, Mann DA. Clinical evidence for the regression of liver fibrosis. J Hepatol. 2012;56(5):1171–80.

Article  PubMed  Google Scholar 

Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61(3):1066–79.

Article  PubMed  Google Scholar 

Mederacke I, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.

Article  PubMed  ADS  Google Scholar 

Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3(4):1473–92.

Article  PubMed  Google Scholar 

Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830–41.

Article  CAS  PubMed  Google Scholar 

Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19(8):1745–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.

Article  CAS  PubMed  Google Scholar 

Xu F, et al. TGF-beta/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64(3):157–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134(6):1655–69.

Article  CAS  PubMed  Google Scholar 

Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25(2):195–206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006;10(1):76–99.

Article  CAS  PubMed  Google Scholar 

Zhang L, et al. Smad2 protects against TGF-beta1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol Cell Biochem. 2015;400(1–2):17–28.

Article  CAS  PubMed  Google Scholar 

Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10(9):542–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

Article  CAS  PubMed  Google Scholar 

Murakami Y, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE. 2011;6(1):e16081.

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

He Y, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal. 2012;24(10):1923–30.

Article  CAS  PubMed  Google Scholar 

Huang CF, et al. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis. J Gastroenterol. 2015;50(4):480–90.

Article  CAS  PubMed  ADS  Google Scholar 

Marquez RT, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Investig. 2010;90(12):1727–36.

Article  CAS  PubMed  Google Scholar 

Xie X, et al. MicroRNA-503 targets mothers against decapentaplegic homolog 7 enhancing hepatic stellate cell activation and hepatic fibrosis. Dig Dis Sci. 2020;66:1928–39.

Article  PubMed  Google Scholar 

Kang H, et al. TGF-beta activates NLRP3 inflammasome by an autocrine production of TGF-beta in LX-2 human hepatic stellate cells. Mol Cell Biochem. 2022;477(5):1329–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, et al. MicroRNA-101 inhibits renal tubular epithelial-to-mesenchymal transition by targeting TGF-β1 type I receptor. Int J Mol Med. 2021. https://doi.org/10.3892/ijmm.2021.4952.

Article  PubMed  PubMed Central  Google Scholar 

Ge S, et al. Role of growth factor receptor-bound 2 in CCl4-induced hepatic fibrosis. Biomed Pharmacother. 2017;92:942–51.

Article  CAS  PubMed  Google Scholar 

Ge S, et al. MicroRNA-146b regulates hepatic stellate cell activation via targeting of KLF4. Ann Hepatol. 2016;15(6):918–28.

CAS  PubMed  Google Scholar 

He H, et al. FBXO31 modulates activation of hepatic stellate cells and liver fibrogenesis by promoting ubiquitination of Smad7. J Cell Biochem. 2019;121:3711–9.

Article  PubMed  Google Scholar 

Hao Y, et al. TRIM27-mediated ubiquitination of PPARγ promotes glutamate-induced cell apoptosis and inflammation. Exp Cell Res. 2021;400(1):112437.

Article  CAS  PubMed  Google Scholar 

Yang JJ, et al. MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology. 2016;359–360:39–46.

Article  PubMed  Google Scholar 

Jung HJ, et al. Ethanol extract of Pharbitis nil ameliorates liver fibrosis through regulation of the TGFbeta1-SMAD2/3 pathway. J Ethnopharmacol. 2022;294:115370.

Article  CAS  PubMed  Google Scholar 

Ma L, et al. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 2018;9(7):718.

Article  PubMed  PubMed Central  Google Scholar 

Caviglia JM, et al. MicroRNA-21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology. 2018;67(6):2414–29.

Article  CAS  PubMed  Google Scholar 

Men R, et al. MircoRNA-145 promotes activation of hepatic stellate cells via targeting kruppel-like factor 4. Sci Rep. 2017;7:40468.

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Tu H, et al. microRNA-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation. J Cell Mol Med. 2020;24(2):1256–67.

Article  CAS  PubMed  Google Scholar 

Yang X, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway. Signal Transduct Target Ther. 2020;5(1):75.

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Ji D, et al. MiR-22 suppresses BMP7 in the development of cirrhosis. Cell Physiol Biochem. 2015;36(3):1026–36.

Article  CAS  PubMed  Google Scholar 

Huang W, et al. LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle. 2021;20(5–6):490–507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, et al. lncRNA Eif4g2 improves palmitate-induced dysfunction of mouse β-cells via modulation of Nrf2 activation. Exp Cell Res. 2020;396(2):112291.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36(Pt 6):1224–31.

Article 

留言 (0)

沒有登入
gif