Artificial Intelligence Algorithms in Cardiovascular Medicine: An Attainable Promise to Improve Patient Outcomes or an Inaccessible Investment?

Centers for Disease Control and Prevention. Heart Disease Facts [Internet]. 2024. Available from: https://www.cdc.gov/heart-disease/data-research/facts-stats/. Accessed 26 Sept 2024.

World Health Organization. Cardiovascular Diseases (CVDs). 2023; Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 26 Sept 2024.

Pearson TA, Vitalis D, Pratt C, Campo R, Armoundas AA, Au D, et al. The Science of Precision Prevention. JACC Adv. 2024;3(1):100759.

Article  PubMed  Google Scholar 

Armoundas AA, Narayan SM, Arnett DK, Spector-Bagdady K, Bennett DA, Celi LA, et al. Use of artificial intelligence in improving outcomes in heart disease: A scientific statement from the american heart association. Circulation. 2024;149(14):1028–50.

Article  Google Scholar 

Spector-Bagdady K, Armoundas AA, Arnaout R, Hall JL, Yeager McSwain B, Knowles JW, et al. Principles for health information collection, sharing, and use: a policy statement from the American Heart Association. Circulation. 2023;148(13):1061–9.

Article  PubMed  PubMed Central  Google Scholar 

Serruys PW, Hara H, Garg S, Kawashima H, Nørgaard BL, Dweck MR, et al. Coronary computed tomographic angiography for complete assessment of coronary artery disease: Jacc state-of-the-art review. J Am Coll Cardiol. 2021;78(7):713–36.

Article  PubMed  Google Scholar 

Yahav-Dovrat A, Saban M, Merhav G, Lankri I, Abergel E, Eran A, et al. Evaluation of artificial intelligence– powered identification of large-vessel occlusions in a comprehensive stroke center. Am J Neuroradiol. 2021;42(2):247–54.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng YJ, Ousdigian KT, Sarkar S, Koehler J, Cho YK, Kloosterman EM. B-po04–036 innovative artificial intelligence application reduces false pause alerts while maintaining perfect true pause alert sensitivity for insertable cardiac monitors. Heart Rhythm. 2021;18:293–4.

Article  Google Scholar 

Chorba JS, Shapiro AM, Le L, Maidens J, Prince J, Pham S, et al. Deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform. J Am Heart Assoc. 2021;10(9):019905.

Article  Google Scholar 

Inc. I.: 510(k) Summary: SignalHF (IM008. FDA [Internet]. 510(k). Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf23/K230842.pdf. Accessed 26 Sept 2024.

Medical O. 510(k) Summary: Visensia. FDA [Internet]. 2008;510(k). Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf8/K081140.pdf. Accessed 26 Sept 2024.

Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the usa and europe (2015–20): a comparative analysis. Lancet Digit Health. 2021;3(3):195–203.

Article  Google Scholar 

Bazoukis G, Hall J, Loscalzo J, Antman EM, Fuster V, Armoundas. A.A.: The inclusion of augmented intelligence in medicine: a framework for successful implementation. Cell Rep Med. 2022;3(1).

Topol. E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

Jagodnik KM, Koplev S, Jenkins SL, Ohno-Machado L, Paten B, Schurer SC, et al. Developing a framework for digital objects in the Big Data to Knowledge (BD2K) commons: Report from the Commons Framework Pilots workshop. J Biomed Inform. 2017;71:49–57.

Article  PubMed  PubMed Central  Google Scholar 

Allen N, Sudlow C, Downey P, Peakman T, Danesh J, Elliott P, et al. UK Biobank: Current status and what it means for epidemiology. Health Policy Technol. 2012;1(3):123–6.

Article  Google Scholar 

Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The electronic medical records and genomics (eMERGE) network: past, present, and future. Genet Med. 2013;15(10):761–71.

Article  PubMed  PubMed Central  Google Scholar 

Schröder M, Muller SH, Vradi E, Mielke J, Lim YM, Couvelard F, et al. Sharing Medical Big Data While Preserving Patient Confidentiality in Innovative Medicines Initiative: A Summary and Case Report from BigData@ Heart. Big Data. 2023;11(6):399–407.

Article  PubMed  PubMed Central  Google Scholar 

Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014;33(7):1123–31.

Article  PubMed  Google Scholar 

Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol. 2016;13(6):350–9.

Article  PubMed  CAS  Google Scholar 

Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9.

Article  PubMed  CAS  Google Scholar 

Willems JL, Abreu-Lima C, Arnaud P, Bemmel JH, Brohet C, Degani R, et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med. 1991;325(25):1767–73.

Article  PubMed  CAS  Google Scholar 

Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with convolutional neural networks. ArXiv Prepr ArXiv170701836. 2017;

Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT press; 2016.

Google Scholar 

Sevakula RK, Au-Yeung WTM, Singh JP, Heist EK, Isselbacher EM, Armoundas AA. State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system. J Am Heart Assoc. 2020;9(4):e013924.

Article  PubMed  PubMed Central  Google Scholar 

Quer G, Arnaout R, Henne M, Arnaout R. Machine learning and the future of cardiovascular care: Jacc state-of-the-art review. J Am Coll Cardiol. 2021;77(3):300–13.

Article  PubMed  PubMed Central  Google Scholar 

Friedrich S, Groß S, König IR, Engelhardt S, Bahls M, Heinz J, et al. Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations. Eur Heart J-Digit Health. 2021;2(3):424–36.

Article  PubMed  PubMed Central  Google Scholar 

Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci Rep. 2020;10(1):16057.

Article  PubMed  PubMed Central  CAS  Google Scholar 

HeartFlow. I.: FDA approval for HeartFlow Analysis (K213857) [Internet]. 2022. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213857.pdf. Accessed 26 Sept 2024.

Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61:2233–41.

Article  PubMed  Google Scholar 

Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Schumacher SP, Diemen PA, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am.

National Institute for Health and Care Excellence (NICE): HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography. Med Technol Guid [Internet]. 2021;32. Available from: https://www.nice.org.uk/guidance/mtg32. Accessed 26 Sept 2024.

de Araújo GP, Garcia-Garcia HM, Dores H, Carvalho MS, Jerónimo Sousa P, Marques H, et al. Coronary computed tomography angiography-adapted Leaman score as a tool to noninvasively quantify total coronary atherosclerotic burden. Int J Cardiovasc Imaging. 2013;29:1575–84.

Article  Google Scholar 

Becker CR. Cardiac CT: a one-stop-shop procedure? Eur Radiol Suppl. 2006;16:65–70.

Article  Google Scholar 

Elijovich L, Dornbos D III, Nickele C, Alexandrov A, Inoa-Acosta V, Arthur AS, et al. Automated emergent large vessel occlusion detection by artificial intelligence improves stroke workflow in a hub and spoke stroke system of care. J NeuroInterventional Surg. 2022;14(7):704–8.

Article  Google Scholar 

Quartieri F, Marina-Breysse M, Pollastrelli A, Paini I, Lizcano C, LilloCastellano JM, Grammatico A. Artificial intelligence augments detection accuracy of cardiac insertable cardiac monitors: results from a pilot prospective observational study. Cardiovasc Digit Health J. 2022;3:201–11.

Article  PubMed  PubMed Central  Google Scholar 

Radtke AP, Ousdigian KT, Haddad TD, Koehler JL, Colombowala IK. B-ab24–04 artificial intelligence enables dramatic reduction of false atrial fibrillation alerts from insertable cardiac monitors. Heart Rhythm. 2021;18:47.

Article  Google Scholar 

Food and Drug Administration. 510(k) Summary: Irregular Rhythm Notification Feature (IRNF) [Internet]. 2023. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf23/K231173.pdf. Accessed 26 Sept 2024.

CardioLogs. 510(k) Summary: CardioLogs ECG Analysis Platform [Internet]. 2017. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf17/K170568.pdf. Accessed 26 Sept 2024.

AliveCor. I.: 510(k) Summary: KardiaAI [İnternet]. 2020. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K181823.pdf. Accessed 26 Sept 2024.

iRhythm Technologies Inc. 510(k) Summary: Zio XT ECG Monitoring System, Zio AT ECG Monitoring System [Internet]. 2019. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190593.pdf. Accessed 26 Sept 2024.

CSD Labs GmbH. EMurmur ID. 2019.

Ltd. M.P.: 510(k) Summary: Stethee Pro 1, Stethee Pro Software System. FDA [Internet]. 2020 Oct 9;510(k). Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193631.pdf. Accessed 26 Sept 2024.

Ltd. T.C.: 510(k) Summary: Tyto Care Ltd. FDA [Internet]. 2016;510(k). Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K181612.pdf. Accessed 26 Sept 2024.

Stratoscientific Inc. 510(k) Summary: Steth IO [Internet]. 2016. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K160016.pdf. Accessed 26 Sept 2024.

LLC EL. 510(k) Summary: Acumen Hypotension Prediction Index (HPI) Feature Software [Internet]. 2018. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf23/K231038.pdf. Accessed 26 Sept 2024.

Comments (0)

No login
gif