World Health Organization: Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2021). Accessed 1 May 2024.
Zhang Y, Nishiyama T, Li H, Huang J, Atmanli A, Sanchez-Ortiz E, et al. A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Mol Ther Methods Clin Dev. 2021;22:122–32. https://doi.org/10.1016/j.omtm.2021.05.014.
Article CAS PubMed PubMed Central Google Scholar
Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017;8:14500. https://doi.org/10.1038/ncomms14500.
Article CAS PubMed PubMed Central Google Scholar
Gier RA, Budinich KA, Evitt NH, Cao Z, Freilich ES, Chen Q, et al. High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nat Commun. 2020;11(1):3455. https://doi.org/10.1038/s41467-020-17209-1.
Article CAS PubMed PubMed Central Google Scholar
Sun W, Wang J, Hu Q, Zhou X, Khademhosseini A, Gu Z. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Sci Adv. 2020;6(21):eaba2983. https://doi.org/10.1126/sciadv.aba2983.
Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome. 2017;28(7–8):247–61. https://doi.org/10.1007/s00335-017-9697-4.
Article CAS PubMed PubMed Central Google Scholar
Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322(5909):1843–5. https://doi.org/10.1126/science.1165771.
Article CAS PubMed PubMed Central Google Scholar
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096.
Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 2008;7(10):1765–71. https://doi.org/10.1016/j.dnarep.2008.06.018.
Article CAS PubMed Google Scholar
Popp MW, Maquat LE. Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine. Cell. 2016;165(6):1319–22. https://doi.org/10.1016/j.cell.2016.05.053.
Article CAS PubMed PubMed Central Google Scholar
Ma X, Chen C, Veevers J, Zhou X, Ross RS, Feng W, et al. CRISPR/Cas9-mediated gene manipulation to create single-amino-acid-substituted and floxed mice with a cloning-free method. Sci Rep. 2017;7:42244. https://doi.org/10.1038/srep42244.
Article CAS PubMed PubMed Central Google Scholar
Papathanasiou S, Markoulaki S, Blaine LJ, Leibowitz ML, Zhang CZ, Jaenisch R, et al. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat Commun. 2021;12(1):5855. https://doi.org/10.1038/s41467-021-26097-y.
Article CAS PubMed PubMed Central Google Scholar
Steczina S, Mohran S, Bailey LRJ, McMillen TS, Kooiker KB, Wood NB, et al. MYBPC3-c.772G>A mutation results in haploinsufficiency and altered myosin cycling kinetics in a patient induced stem cell derived cardiomyocyte model of hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2024;191:27–39. https://doi.org/10.1016/j.yjmcc.2024.04.010.
Ghahremani S, Kanwal A, Pettinato A, Ladha F, Legere N, Thakar K, et al. CRISPR Activation Reverses Haploinsufficiency and Functional Deficits Caused by TTN Truncation Variants. Circulation. 2024;149(16):1285–97. https://doi.org/10.1161/CIRCULATIONAHA.123.063972.
Article CAS PubMed Google Scholar
Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021;385(6):493–502. https://doi.org/10.1056/NEJMoa2107454.
Article CAS PubMed Google Scholar
Yee AW, Aldeghi M, Blakeley MP, Ostermann A, Mas PJ, Moulin M, et al. A molecular mechanism for transthyretin amyloidogenesis. Nature Communications. 2019;10(1). https://doi.org/10.1038/s41467-019-08609-z.
Romano R, Ghahremani S, Zimmerman T, Legere N, Thakar K, Ladha FA, et al. Reading Frame Repair of TTN Truncation Variants Restores Titin Quantity and Functions. Circulation. 2022;145(3):194–205. https://doi.org/10.1161/CIRCULATIONAHA.120.049997.
Article CAS PubMed Google Scholar
Yutzey KE. Cardiomyocyte Proliferation: Teaching an Old Dogma New Tricks. Circ Res. 2017;120(4):627–9. https://doi.org/10.1161/CIRCRESAHA.116.310058.
Article CAS PubMed PubMed Central Google Scholar
Zheng Y, VanDusen NJ, Butler CE, Ma Q, King JS, Pu WT. Efficient In Vivo Homology-Directed Repair Within Cardiomyocytes. Circulation. 2022;145(10):787–9. https://doi.org/10.1161/CIRCULATIONAHA.120.052383.
Article PubMed PubMed Central Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83. https://doi.org/10.1016/j.cell.2013.02.022.
Article CAS PubMed PubMed Central Google Scholar
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31(9):833–8. https://doi.org/10.1038/nbt.2675.
Article CAS PubMed PubMed Central Google Scholar
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143.
Article CAS PubMed PubMed Central Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4. https://doi.org/10.1038/nature17946.
Article CAS PubMed PubMed Central Google Scholar
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57. https://doi.org/10.1038/s41586-019-1711-4.
Article CAS PubMed PubMed Central Google Scholar
Tang L, Yang F, He X, Xie H, Liu X, Fu J, et al. Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells. Cell Regen. 2019;8(2):44–50. https://doi.org/10.1016/j.cr.2019.08.002.
Article PubMed PubMed Central Google Scholar
Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020;38(4):471–81. https://doi.org/10.1038/s41587-020-0412-8.
Article CAS PubMed PubMed Central Google Scholar
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57–63. https://doi.org/10.1038/nature26155.
Article CAS PubMed PubMed Central Google Scholar
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71. https://doi.org/10.1038/nature24644.
Article CAS PubMed PubMed Central Google Scholar
Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36(9):843–6. https://doi.org/10.1038/nbt.4172.
Comments (0)