Adero M, Tripathi JN, Tripathi L (2023) Advances in somatic embryogenesis of banana. Int J Mol Sci 24:10999. https://doi.org/10.3390/ijms241310999
Article CAS PubMed PubMed Central Google Scholar
Ahmad F, Martawi NM, Poerba YS, de Jong H, Schouten H, Kema GHJ (2020) Genetic mapping of fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor Appl Genet 133:3409–3418. https://doi.org/10.1007/s00122-020-03677-y
Article CAS PubMed PubMed Central Google Scholar
Ahmad F, Poerba YS, Kema GHJ, de Jong H (2021) Male meiosis and pollen morphology in diploid Indonesian wild bananas and cultivars. Nucl 64:181–191. https://doi.org/10.1007/s13237-021-00350-7
Bakry F, Horry JP (2016) Advances in genomics: applications to banana breeding. Acta Hortic 1114:171–180. https://doi.org/10.17660/ActaHortic.2016.1114.24
Chang SF, Yen YF, Miyajima I, Huang KL (2019) The efficiency of hybridization and seed production in Musa spp. J Fac Agr Kyushu Univ 64:169–176. https://doi.org/10.5109/2339043
Dale J, James A, Paul JY, Khanna H, Smith M, Peraza-Echeverria S, Garcia-Bastidas F, Kema G, Waterhouse P, Mengersen K, Harding R (2017) Transgenic cavendish bananas with resistance to fusarium wilt tropical race 4. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-01670-6
De Langhe E, Perrier X, Donohue M, Denham T (2015) The original banana split: multi-disciplinary implications of the generation of African and Pacific plantains in Island Southeast Asia. Ethnobot Res Appl 14:299–312. https://doi.org/10.17348/era.14.0.299-312
Debbarma R, Sudhakar D, Kumar KK, Soorianathasundaram K (2019) Morphological development and ultrastructural changes during somatic embryogenesis of popular banana cultivars. Int J Curr Microbiol Appl Sci 8:1676–1683. https://doi.org/10.20546/ijcmas.2019.806.200
Divakaran SP, Nair AS (2011) Somatic embryogenesis from bract cultures in diploid Musa acuminata cultivars from South India. Sci Hortic 131:99–102. https://doi.org/10.1016/j.scienta.2011.09.028
Elayabalan S, Kalaiponmani K, Pillay M, Chandrasekar A, Selvarajan R, Kumar KK, Balasubramanian P (2013) Efficient regeneration of the endangered banana cultivar “Virupakshi” (AAB) via embryogenic cell suspension from immature male flowers. African J Biotechnol 12:563–569. https://doi.org/10.5897/AJB12.2660
Escalant JV, Teisson C (1989) Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminata and Musa balbisiana. Plant Cell Rep 7:665–668. https://doi.org/10.1007/BF00272056
Article CAS PubMed Google Scholar
Escobedo-GraciaMedrano RM, Enríquez-Valencia AJ, Youssef M, López-Gómez P, Cruz-Cárdenas CI, Ku-Cauich JR (2016) Somatic embryogenesis: fundamental aspects and applications. In: Loyola-Vargas V, Ochoa-Alejo N, (Eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 381-400. https://doi.org/10.1007/978-3-319-33705-0_21
Escobedo-GraciaMedrano RM, Maldonado-Borges JI, Burgos-Tan MJ, Valadez-González N, Ku-Cauich JR (2014) Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell Tiss Org Cult 116:175–185. https://doi.org/10.1007/s11240-013-0394-z
Fisichella M, Morini S (2003) Somatic embryo and root regeneration from quince leaves cultured in ventilated vessels or under different oxygen and carbon dioxide levels. In Vitro Cell Dev Biol - Plant 39:402–408. https://doi.org/10.1079/IVP2003429
Georget F, Domergue R, Ferrière N, Côte FX (2000) Morphohistological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep 19:748–754. https://doi.org/10.1007/s002999900188
Grapin A, Ortíz JL, Lescot T, Ferrière N, Côte FX (2000) Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell Tiss Org Cult 61:237–244. https://doi.org/10.1023/A:1006423304033
Jalil M, Khalid N, Othman RY (2003) Plant regeneration from embryogenic suspension cultures of Musa acumanata cv. Mas (AA). Plant Cell Tiss Org Cult 75:209–214. https://doi.org/10.1023/A:1025814922547
Khalil S, Cheah K, Perez E, Gaskill D, Hu J (2002) Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Rep 20:1128–1134. https://doi.org/10.1007/s00299-002-0461-0
Li LF, Wang HY, Zhang C, Wang XF, Shi FX, Chen WN, Ge XJ (2013) Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One 8:e80502. https://doi.org/10.1371/journal.pone.0080502
Article ADS CAS PubMed PubMed Central Google Scholar
Marroquin CG, Paduscheck C, Escalant JV, Teisson C (1993) Somatic embryogenesis and plant regeneration through cell suspensions in Musa acuminata. In Vitro Cell Dev Biol - Plant. 29:43–46. https://doi.org/10.1007/BF02632238
Martin G, Cottin A, Baurens FC, Labadie K, Hervouet C, Salmon F, Paulo-de-la-Reberdiere N, Van den Houwe I, Sardos J, Aury JM, D’Hont A, Yahiaoui N (2023) Interspecific introgression patterns reveal the origins of worldwide cultivated bananas in New Guinea. Plant J 113:802–818. https://doi.org/10.1111/tpj.16086
Article CAS PubMed Google Scholar
Matsumoto K, Monte DdeC, Teixeira JB, Haicour R, Davey MR (2010) Banana protoplasts: culture and its applications. In: Tree forest science and biotechnology 4: 32–38. Available via Global Science Books. http://www.globalsciencebooks.info/Online/GSBOnline/images/2010/TFSB_4(SI1)/TFSB_4(SI1)32-38o.pdf. Cited 30 Oct 2023
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Najafi S, Bertini E, Incà ED, Fasoli M, Zenoni S. (2023) DNA-free genome editing in grapevine using CRISPR / Cas9 ribonucleoprotein complexes followed by protoplast regeneration. Hortic Res 10. https://doi.org/10.1093/hr/uhac240
Namanya P, Mutumba G, Magambo SM, Tushemereirwe W (2014) Developing a cell suspension system for Musa-AAA-EA cv. ‘Nakyetengu’: a critical step for genetic improvement of Matooke East African Highland bananas. In Vitro Cell Dev Biol - Plant. 50:442–450. https://doi.org/10.1007/s11627-014-9598-0
Nandhakumar N, Kumar K, Sudhakar D, Soorianathasundaram K (2018) Plant regeneration, developmental pattern and genetic fidelity of somatic embryogenesis derived Musa spp. J Genet Eng Biotechnol. 16:587–598. https://doi.org/10.1016/j.jgeb.2018.10.001
Article PubMed PubMed Central Google Scholar
Nasution RE, Yamada I (2001) Pisang-pisang Liar di Indonesia. Pusat Penelitian dan Pengembangan Biologi - LIPI, Bogor Indonesia
Natarajan N, Sundararajan S, Ramalingam S, Chellakan PS (2020) Efficient and rapid in-vitro plantlet regeneration via somatic embryogenesis in ornamental bananas (Musa spp.). Biologia 75:317–326. https://doi.org/10.2478/s11756-019-00358-0
Oates KM, Ranney TG, Touchell DH (2012) Influence of induced polyploidy on fertility and morphology of rudbeckia species and hybrids. HortScience 47:1217–1221. https://doi.org/10.21273/HORTSCI.47.9.1217
Rahayuniati RF, Subandiyah S (2022) Symptom expression and resistance of some banana cultivars to banana bunchy top virus infection. Agric Nat Resour 56:1019–1028. https://doi.org/10.34044/j.anres.2022.56.5.16
Remakanthan A, Menon TG, Soniya EV (2014) Somatic embryogenesis in banana (Musa acuminata AAA cv. Grand Naine): effect of explant and culture conditions. In Vitro Cell Dev Biol - Plant 50:127–136. https://doi.org/10.1007/s11627-013-9546-4
Sardos J, Breton C, Perrier X, Van den Houwe I, Carpentier S, Paofa J, Rouard M, Roux N (2022) Hybridization, missing wild ancestors and the domestication of cultivated diploid bananas. Front Plant Sci 13:1–17. https://doi.org/10.3389/fpls.2022.969220
Sass J (1964) Botanical microtechnique. Iowa State Univ. Press, Ames Iowa
Schoofs H, Panis B, Swennen R (1998) Competence of scalps for somatic embryogenesis in Musa. Acta Hortic 490:475–484. https://doi.org/10.17660/ActaHortic.1998.490.50
Shepherd K (1999) Cytogenetics of the genus Musa. Montpellier, France, International Network for the Improvement of Banana and Plantain (Inibap)
Sholi NJY, Chaurasia A, Agrawal A, Sarin NB (2009) ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell Tiss Org Cult 99:133–140. https://doi.org/10.1007/s11240-009-9585-z
Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. Bot J Linn Soc 55:302–312. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x
Srinivas L, Ganapathi TR, Suprasanna P, Bapat VA (2006) Desiccation and ABA treatment improves conversion of somatic embryos to plantlets in banana (Musa spp.) cv. Rasthali (AAB). Indian J Biotechnol 5:521–526
Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, Swennen R (2006) Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci 170:104–112. https://doi.org/10.1016/j.plantsci.2005.08.007
Uma S, Lakshmi S, Saraswathi MS, Akbar A, Mustaffa MM (2012) Plant regeneration through somatic embryogenesis from immature and mature zygotic embryos of Musa acuminata ssp. burmannica. In Vitro Cell Dev Biol - Plant 48:539–545. https://doi.org/10.1007/s11627-012-9462-z
Vargas JLO, Fernández JS, Vega MEA (2018) Regeneration of plants from embryogenic cell suspensions of cv. “Datil” (Musa AA): morphological evaluation of plants in the field. J Agric Sci Technol B 8:29–41. https://doi.org/10.17265/2161-6264/2018.01.003
Wang J, Gan S, Zheng Y, Jin Z, Cheng Y, Liu J (2022) Banana somatic embryogenesis and biotechnological application. Trop Plants 1:1–13. https://doi.org/10.48130/tp-2022-0012
Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462. https://doi.org/10.1093/oxfordjournals.aob.a087127
Comments (0)