Bose B, Kumaria S, Choudhury H, Tandon P (2016) Assessment of genetic homogeneity and analysis of phytomedicinal potential in micropropagated plants of Nardostachys jatamansi, a critically endangered, medicinal plant of alpine Himalayas. Plant Cell Tiss Org Cult 124:331–349. https://doi.org/10.1007/s11240-015-0897-x
Bose B, Kumaria S, Tandon P (2022) Physiological insights into the role of temperature and light conditions on in vitro growth, membrane thermostability and antioxidative activity of Nardostachys jatamansi, an IUCN Red-listed critically endangered therapeutic plant. S Afr J Bot 146:365–374. https://doi.org/10.1016/j.sajb.2021.11.001
Chaparian RR, van Kessel JC (2021) Promoter pull-down assay: a biochemical screen for DNA-binding proteins. In: Turksen K (ed) Stem cell renewal and cell-cell communication. Methods in Molecular Biology, vol 2346. Humana, New York, NY, pp 165–172. https://doi.org/10.1007/7651_2020_307
Chardin C, Schenk ST, Hirt H, Colcombet J, Krapp A (2017) Mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci 260:101–108. https://doi.org/10.1016/j.plantsci.2017.04.006
Article CAS PubMed Google Scholar
Chatterjee A, Paul A, Unnati GM, Rajput R, Biswas T, Kar T, Basak S, Mishra N, Pandey A, Srivastava AP (2020) MAPK cascade gene family in Camellia sinensis: in-silico identification, expression profiles and regulatory network analysis. BMC Genom 21:613. https://doi.org/10.1186/s12864-020-07030-x
Chauhan HK, Oli S, Bisht AK, Meredith C, Leaman D (2021) Review of the biology, uses and conservation of the critically endangered endemic Himalayan species Nardostachys jatamansi (Caprifoliaceae). Biodivers Conserv 30:3315–3333. https://doi.org/10.1007/s10531-021-02269-6
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
Article CAS PubMed Google Scholar
Dhiman N, Devi K, Bhattacharya A (2021) Development of low cost micropropagation protocol for Nardostachys jatamansi: a critically endangered medicinal herb of Himalayas. S Afr J Bot 140:468–477. https://doi.org/10.1016/j.sajb.2021.04.002
Dhiman N, Kumar A, Kumar D, Bhattacharya A (2020) De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Sci Rep 10:17186. https://doi.org/10.1038/s41598-020-74049-1
Article CAS PubMed PubMed Central Google Scholar
Fatma M, Asgher M, Iqbal N, Rasheed F, Sehar Z, Sofo A, Khan NA (2022) Ethylene signalling under stressful environments: analyzing collaborative knowledge. Plants 11:2211. https://doi.org/10.3390/plants11172211
Article CAS PubMed PubMed Central Google Scholar
Gusain S, Joshi S, Joshi R (2023) Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plant Physiol Biochem 197:107646. https://doi.org/10.1016/j.plaphy.2023.107646
Article CAS PubMed Google Scholar
Huang L, Li Z, Fu Q, Liang C, Liu Z, Liu Q, Pu G, Li J (2021) Genome-wide identification of CBL-CIPK gene family in honeysuckle (Lonicera japonica Thunb.) and their regulated expression under salt stress. Front Genet 12:751040. https://doi.org/10.3389/fgene.2021.751040
Article CAS PubMed PubMed Central Google Scholar
Jia W, Li B, Li S, Liang Y, Wu X, Ma M, Wang J, Gao J, Cai Y, Zhang Y, Wang Y, Li J, Wang Y (2016) Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol 14:e1002550. https://doi.org/10.1371/journal.pbio.1002550
Article CAS PubMed PubMed Central Google Scholar
Jiang M, Zhang Y, Li P, Jian J, Zhao C, Wen G (2022) Mitogen-activated protein kinase and substrate identification in plant growth and development. Int J Mol Sci 23:2744. https://doi.org/10.3390/ijms23052744
Article CAS PubMed PubMed Central Google Scholar
Joshi S, Dar AI, Acharya A, Joshi R (2022a) Charged gold nanoparticles promote in vitro proliferation in Nardostachys jatamansi by differentially regulating chlorophyll content, hormone concentration, and antioxidant activity. Antioxidants 11:1962. https://doi.org/10.3390/antiox11101962
Article CAS PubMed PubMed Central Google Scholar
Joshi S, Joshi R (2024) Comparative transcriptome profiling unveils the role of differentially charged gold nanoparticle in growth, metabolic regulation and defence response of micro-propagated Nardostachys jatamansi Wall. ex DC. S Afr J Bot 167:585–596. https://doi.org/10.1016/j.sajb.2024.02.052
Joshi S, Nath J, Singh AK, Pareek A, Joshi R (2022b) Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiol Plant 174:e13702. https://doi.org/10.1111/ppl.13702
Li J, Wu J, Peng K, Fan G, Yu H, Wang W, He Y (2019) Simulating the effects of climate change across the geographical distribution of two medicinal plants in the genus Nardostachys. PeerJ 7:6730. https://doi.org/10.6084/m9.figshare.7304393.v1
Li M, Li B, Yang M, Wang L, Hou G, Lin Y, Zhang Y, Zhang Y, Chen Q, Wang Y, He W, Wang X, Tang H, Yang G, Luo Y (2022) Genome-wide identification and expression of MAPK gene family in cultivated strawberry and their involvement in fruit developing and ripening. Int J Mol Sci 23:5201. https://doi.org/10.3390/ijms23095201
Article CAS PubMed PubMed Central Google Scholar
Li Y, Cai H, Liu P, Wang C, Gao H, Wu C, Yan K, Zhang S, Huang J, Zheng C (2017) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Comm 484:292–297. https://doi.org/10.1016/j.bbrc.2017.01.104
Article CAS PubMed Google Scholar
Lian WW, Tang YM, Gao SQ, Zhang Z, Xin ZHAO, Zhao CP (2012) Phylogenetic analysis and expression patterns of the MAPK gene family in wheat (Triticum aestivum L.). J Integr Agric 11:1227–1235. https://doi.org/10.1016/S2095-3119(12)60119-1
López-Bucio JS, Dubrovsky JG, Raya-González J, Ugartechea-Chirino Y, López-Bucio J, de Luna-Valdez LA, Ramos-Vega M, León P, Guevara-García A (2014) Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J Exp Bot 65:169–183. https://doi.org/10.1093/jxb/ert368
Article CAS PubMed Google Scholar
Ma Y, Nicolet J (2023) Specificity models in MAPK cascade signalling. FEBS Open Bio 13:1138–1139. https://doi.org/10.1002/2211-5463.13619
Majeed Y, Zhu X, Zhang N, Raza A, Haider FU, Si H (2023) Harnessing the role of mitogen-activated protein kinases against abiotic stresses in plants. Front Plant Sci 14:932923. https://doi.org/10.3389/fpls.2023.932923
Article PubMed PubMed Central Google Scholar
Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H (2015) Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom 16:58. https://doi.org/10.1186/s12864-015-1244-7
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Podia V, Chatzopoulos D, Milioni D, Stravopodis DJ, Dervisi I, Roussis A, Roubelakis-Angelakis KA, Haralampidis K (2023) GUS reporter-aided promoter deletion analysis of A. thaliana POLYAMINE OXIDASE 3. Int J Mol Sci 24:2317. https://doi.org/10.3390/ijms24032317
Article CAS PubMed PubMed Central Google Scholar
Ponce-Pineda IG, Carmona-Salazar L, Saucedo-García M, Cano-Ramírez D, Morales-Cedillo F, Peña-Moral A, Gavilanes-Ruíz M (2021) MPK6 kinase regulates plasma membrane H+-ATPase activity in cold acclimation. Int J Mol Sci 22:6338. https://doi.org/10.3390/ijms22126338
Article CAS PubMed PubMed Central Google Scholar
Rana SK, Rana HK, Ranjitkar S, Ghimire SK, Gurmachhan CM, O’Neill AR, Sun H (2020) Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal. Ecol Indic 115:106435. https://doi.org/10.1016/j.ecolind.2020.106435
Comments (0)