van der Linde D, Konings EE, Slager MA et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58:2241–2247. https://doi.org/10.1016/j.jacc.2011.08.025
Hoang TT, Goldmuntz E, Roberts AE et al (2018) The congenital heart disease genetic network study: cohort description. PLoS ONE 13:e0191319. https://doi.org/10.1371/journal.pone.0191319
Article CAS PubMed PubMed Central Google Scholar
Metcalf MK, Rychik J (2020) Outcomes in hypoplastic left heart syndrome. Pediatr Clin North Am 67:945–962. https://doi.org/10.1016/j.pcl.2020.06.008
Kritzmire SM, Cossu AE (2022) Hypoplastic Left Heart Syndrome. In: StatPearls. StatPearls Publishing, Treasure Island (FL).
Bejjani AT, Wary N, Gu M (2021) Hypoplastic left heart syndrome (HLHS): molecular pathogenesis and emerging drug targets for cardiac repair and regeneration. Expert Opin Ther Targets 25:621–632. https://doi.org/10.1080/14728222.2021.1978069
Article CAS PubMed PubMed Central Google Scholar
Danford DA, Cronican P (1992) Hypoplastic left heart syndrome: Progression of left ventricular dilation and dysfunction to left ventricular hypoplasia in utero. Am Heart J 123:1712–1713. https://doi.org/10.1016/0002-8703(92)90834-I
Article CAS PubMed Google Scholar
Simpson JM, Sharland GK (1997) Natural history and outcome of aortic stenosis diagnosed prenatally. Heart 77:205–210
Article CAS PubMed PubMed Central Google Scholar
Apitz C, Webb GD, Redington AN (2009) Tetralogy of fallot. Lancet 374:1462–1471. https://doi.org/10.1016/S0140-6736(09)60657-7
Article CAS PubMed Google Scholar
Fisher DJ, Heymann MA, Rudolph AM (1982) Regional myocardial blood flow and oxygen delivery in fetal, newborn, and adult sheep. Am J Physiol 243:H729-731. https://doi.org/10.1152/ajpheart.1982.243.5.H729
Article CAS PubMed Google Scholar
Taverne YJHJ, Sadeghi A, Bartelds B et al (2021) Right ventricular phenotype, function, and failure: a journey from evolution to clinics. Heart Fail Rev 26:1447–1466. https://doi.org/10.1007/s10741-020-09982-4
Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931. https://doi.org/10.1161/hc4901.100526
Article CAS PubMed Google Scholar
Asp J, Synnergren J, Jonsson M et al (2012) Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo. Physiol Genomics 44:89–98. https://doi.org/10.1152/physiolgenomics.00137.2011
Article CAS PubMed Google Scholar
Gorr MW, Sriram K, Chinn AM et al (2020) Transcriptomic profiles reveal differences between the right and left ventricle in normoxia and hypoxia. Physiol Rep 8:e14344. https://doi.org/10.14814/phy2.14344
Article PubMed PubMed Central Google Scholar
Lei I, Huang W, Ward PA et al (2021) Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiol Rep 9:e15004. https://doi.org/10.14814/phy2.15004
Article CAS PubMed PubMed Central Google Scholar
Mercuro G, Bassareo PP, Mariucci E et al (2014) Sex differences in congenital heart defects and genetically induced arrhythmias. J Cardiovasc Med (Hagerstown) 15:855–863. https://doi.org/10.2459/JCM.0b013e32835ec828
Article CAS PubMed Google Scholar
Storch TG, Mannick EE (1992) Epidemiology of congenital heart disease in Louisiana: an association between race and sex and the prevalence of specific cardiac malformations. Teratology 46:271–276. https://doi.org/10.1002/tera.1420460311
Article CAS PubMed Google Scholar
Karamlou T, Diggs BS, Ungerleider RM, Welke KF (2010) Evolution of treatment options and outcomes for hypoplastic left heart syndrome over an 18-year period. J Thorac Cardiovasc Surg 139:119–126. https://doi.org/10.1016/j.jtcvs.2009.04.061
Ohye RG, Sleeper LA, Mahony L et al (2010) Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med 362:1980–1992. https://doi.org/10.1056/NEJMoa0912461
Article CAS PubMed PubMed Central Google Scholar
Surerus E, Huggon IC, Allan LD (2003) Turner’s syndrome in fetal life. Ultrasound Obstet Gynecol 22:264–267. https://doi.org/10.1002/uog.151
Article CAS PubMed Google Scholar
Sharma V, Goessling LS, Brar AK et al (2021) Coxsackievirus B3 infection early in pregnancy induces congenital heart defects through suppression of fetal cardiomyocyte proliferation. J Am Heart Assoc 10:e017995. https://doi.org/10.1161/JAHA.120.017995
Article CAS PubMed PubMed Central Google Scholar
Breuer K, Foroushani AK, Laird MR et al (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:D1228-1233. https://doi.org/10.1093/nar/gks1147
Article CAS PubMed Google Scholar
Huang SSY, Makhlouf M, AbouMoussa EH et al (2020) Differential regulation of the immune system in a brain-liver-fats organ network during short-term fasting. Mol Metab 40:101038. https://doi.org/10.1016/j.molmet.2020.101038
Article CAS PubMed PubMed Central Google Scholar
Yu G (2020) Gene ontology semantic similarity analysis using GOSemSim. Methods Mol Biol 2117:207–215. https://doi.org/10.1007/978-1-0716-0301-7_11
Article CAS PubMed Google Scholar
Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24:719–720. https://doi.org/10.1093/bioinformatics/btm563
Article CAS PubMed Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800. https://doi.org/10.1371/journal.pone.0021800
Article ADS CAS PubMed PubMed Central Google Scholar
Febbo PG, Mulligan MG, Slonina DA et al (2007) Literature Lab: a method of automated literature interrogation to infer biology from microarray analysis. BMC Genomics 8:461. https://doi.org/10.1186/1471-2164-8-461
Article PubMed PubMed Central Google Scholar
Chhangawala S, Rudy G, Mason CE, Rosenfeld JA (2015) The impact of read length on quantification of differentially expressed genes and splice junction detection. Genome Biol 16:131. https://doi.org/10.1186/s13059-015-0697-y
Article CAS PubMed PubMed Central Google Scholar
Ce M et al (2018) Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx182
Ontsouka E, Lüthi M, Zaugg J et al (2021) Establishment and validation of an approach allowing unequivocal fetal sex determination based on placental sex-specific genes. Placenta 112:132–134. https://doi.org/10.1016/j.placenta.2021.07.295
Article CAS PubMed Google Scholar
Lefèvre N, Corazza F, Duchateau J et al (2012) Sex differences in inflammatory cytokines and CD99 expression following in vitro lipopolysaccharide stimulation. Shock 38:37–42. https://doi.org/10.1097/SHK.0b013e3182571e46
Article CAS PubMed Google Scholar
Ma W et al (2022) Sex-biased and parental allele-specific gene regulation by KDM6A. Biol Sex Differences. https://doi.org/10.1186/s13293-022-00452-0
Bamforth SD, Bragança J, Farthing CR et al (2004) Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 36:1189–1196. https://doi.org/10.1038/ng1446
Article CAS PubMed Google Scholar
Pierpont ME, Brueckner M, Chung WK et al (2018) Genetic basis for congenital heart disease: revisited: a scientific statement from the american heart association. Circulation 138:e653–e711. https://doi.org/10.1161/CIR.0000000000000606
Article PubMed PubMed Central Google Scholar
Mohapatra B, Casey B, Li H et al (2009) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 18:861–871. https://doi.org/10.1093/hmg/ddn411
Article CAS PubMed Google Scholar
Franco D, Sedmera D, Lozano-Velasco E (2017) Multiple roles of Pitx2 in cardiac development and disease. J Cardiovasc Dev Dis 4:16.
Comments (0)