World Health Organization (WHO). Estimated age-standardized incidence and mortality rates World) in 2020, cervix uteri, females, all ages. Globocan 2020. Available at: https://gco.iarc.fr. Accessed 16 April 2021
Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, Stanley MA, Franceschi S. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2016;2:16086.
Au WW, Abdou-Salama S, Sierra-Torres CH, Al-Hendy A. Environmental risk factors for prevention and molecular intervention of cervical cancer. Int J Hyg Environ Health. 2007;210(6):671–8.
Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellularestrogen receptor mediates rapid cell signaling. Science. 2005;307:1625–30.
Article ADS CAS PubMed Google Scholar
Chen D, Carter TH, Auborn KJ. Apoptosis ofcervical cancer cells: implications for adjunct antiestrogentherapy for cervical cancer. Anticancer Res. 2004;24:2649–56.
Brake T, Lambert PF. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci USA. 2005;102(7):2490–5. https://doi.org/10.1073/pnas.0409883102. (Epub 2005 Feb 7. PMID: 15699322; PMCID: PMC548999).
Article ADS CAS PubMed PubMed Central Google Scholar
Reuschenbach M, von Knebel DM. Diagnostic tests for the detection of human papillomavirus-associated cervical lesions. Curr Curr Pharm Des. 2013;19(8):1358–70.
Chen Y, Cui Z, Xiao Z, Hu M, Jiang C, Lin Y, Chen Y. PAX1 and SOX1 methylation as an initial screening method for cervical cancer: a meta-analysis of individual studies in Asians. Ann Transl Med. 2016;4(19):365.
Article PubMed PubMed Central Google Scholar
Rodríguez-Rasgado JA, Acuña-Macías I, Camacho J. Eag1 channels as potential cancer biomarkers. Sensors (Basel). 2012;12(5):5986–95.
Article ADS PubMed Google Scholar
VázquezSánchez AY, Hinojosa LM, ParraguirreMartínez S, González A, Morales F, Montalvo G, et al. Expression of KATP channels in human cervical cancer: potential tools for diagnosis and therapy. Oncol Lett. 2018;15:6302–8.
Pardo LA, Stühmer W. The roles of K (+) channels in cancer. Nat Rev Cancer. 2014;14:3948.
Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E, et al. Role of KCNMA1 in breast cancer. PLoS ONE. 2012;7: e41664.
Article ADS CAS PubMed PubMed Central Google Scholar
Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 2007;26(17):2525–34.
Article CAS PubMed Google Scholar
Ramírez A, Vera E, Gamboa-Domínguez A, Lambert P, Gariglio P, Camacho J. Calcium-activated potassium channels as potential early markers of human cervical cancer. Oncol Lett. 2018;15(5):7249–54.
PubMed PubMed Central Google Scholar
D’Amico M, Gasparoli L, Arcangeli A. Potassium channels: novel emerging biomarkers and targets for therapy in cancer. Recent Pat Anticancer Drug Discov. 2013;8(1):53–65. https://doi.org/10.2174/15748928130106. (PMID: 22574647).
Article CAS PubMed Google Scholar
Sun X, Li Y, Lan H, Jiang T, Wan X, Cheng Y. Identification of KCNK1 as a potential prognostic biomarker and therapeutic target of breast cancer. Pathol Res Pract. 2023;241: 154286. https://doi.org/10.1016/j.prp.2022.154286. (Epub 2022 Dec 20. PMID: 36566598).
Article CAS PubMed Google Scholar
Wen J, Lin B, Lin L, Chen Y, Wang O. KCNN4 is a diagnostic and prognostic biomarker that promotes papillary thyroid cancer progression. Aging (Albany NY). 2020;12(16):16437–56. https://doi.org/10.18632/aging.103710.
Article CAS PubMed Google Scholar
Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, Goydos J, et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS ONE. 2010;5(11): e13779.
Article ADS PubMed PubMed Central Google Scholar
Tang T, Wong HK, Gu W, Yu MY, To KF, Wang CC, et al. MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol. 2013;129(1):199–208.
Comments (0)