Nuclear translocation of STAT5 initiates iron overload in huntington’s disease by up-regulating IRP1 expression

Albin RL, Tagle DA (1995) Genetics and molecular biology of Huntington’s disease. Trends Neurosci 18:11–14. https://doi.org/10.1016/0166-2236(95)93943-r

Article  CAS  PubMed  Google Scholar 

Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599. https://doi.org/10.1016/j.bbagen.2008.09.004

Article  CAS  PubMed  Google Scholar 

Ayton S, Lei P, Adlard PA, Volitakis I, Cherny RA, Bush AI et al (2014) Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegener 9:27. https://doi.org/10.1186/1750-1326-9-27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartzokis G, Tishler TA (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cell Mol Biol (Noisy-le-grand) 46:821–833

CAS  PubMed  Google Scholar 

Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J (1999) Increased basal ganglia iron levels in Huntington disease. Arch Neurol 56:569–574. https://doi.org/10.1001/archneur.56.5.569

Article  CAS  PubMed  Google Scholar 

Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL (2004) Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical disconnection in aging and Alzheimer’s disease. Neurobiol Aging 25:843–851. https://doi.org/10.1016/j.neurobiolaging.2003.09.005

Article  CAS  PubMed  Google Scholar 

Bartzokis G, Lu PH, Tishler TA, Fong SM, Oluwadara B, Finn JP et al (2007) Myelin breakdown and iron changes in Huntington’s disease: pathogenesis and treatment implications. Neurochem Res 32:1655–1664. https://doi.org/10.1007/s11064-007-9352-7

Article  CAS  PubMed  Google Scholar 

Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100. https://doi.org/10.1016/j.molmed.2009.01.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem 69:443–454. https://doi.org/10.1046/j.1471-4159.1997.69020443.x

Article  CAS  PubMed  Google Scholar 

Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93. https://doi.org/10.1002/(sici)1098-1136(199606)17:2%3C83::aid-glia1%3E3.0.co;2-7

Article  CAS  PubMed  Google Scholar 

Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm (Vienna) 118:301–314. https://doi.org/10.1007/s00702-010-0470-z

Article  CAS  PubMed  Google Scholar 

Damiano M, Diguet E, Malgorn C, D’aurelio M, Galvan L, Petit F et al (2013) A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22:3869–3882. https://doi.org/10.1093/hmg/ddt242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dexter DT, Sian J, Jenner P, Marsden CD (1993) Implications of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia. Adv Neurol 60:273–281

CAS  PubMed  Google Scholar 

Douaud G, Behrens TE, Poupon C, Cointepas Y, Jbabdi S, Gaura V et al (2009) In vivo evidence for the selective subcortical degeneration in Huntington’s disease. NeuroImage 46:958–966. https://doi.org/10.1016/j.neuroimage.2009.03.044

Article  PubMed  Google Scholar 

Firdaus WJ, Wyttenbach A, Giuliano P, Kretz-Remy C, Currie RW, Arrigo AP (2006) Huntingtin inclusion bodies are iron-dependent centers of oxidative events. Febs j 273:5428–5441. https://doi.org/10.1111/j.1742-4658.2006.05537.x

Article  CAS  PubMed  Google Scholar 

Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP et al (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767. https://doi.org/10.1148/radiology.210.3.r99fe41759

Article  CAS  PubMed  Google Scholar 

Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg RJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25. https://doi.org/10.1016/j.mri.2004.10.001

Article  CAS  PubMed  Google Scholar 

Haller S, Bartsch A, Nguyen D, Rodriguez C, Emch J, Gold G et al (2010) Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology 257:764–773. https://doi.org/10.1148/radiol.10100612

Article  PubMed  Google Scholar 

Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623. https://doi.org/10.1111/j.1471-4159.1992.tb10990.x

Article  CAS  PubMed  Google Scholar 

Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38. https://doi.org/10.1016/j.cell.2010.06.028

Article  CAS  PubMed  Google Scholar 

Jiang H, Sun YM, Hao Y, Yan YP, Chen K, Xin SH et al (2014) Huntingtin gene CAG repeat numbers in Chinese patients with Huntington’s disease and controls. Eur J Neurol 21:637–642. https://doi.org/10.1111/ene.12366

Article  CAS  PubMed  Google Scholar 

Klausner RD, Rouault TA, Harford JB (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28. https://doi.org/10.1016/0092-8674(93)90046-s

Article  CAS  PubMed  Google Scholar 

Leitner DF, Connor JR (2012) Functional roles of transferrin in the brain. Biochim Biophys Acta 1820:393–402. https://doi.org/10.1016/j.bbagen.2011.10.016

Article  CAS  PubMed  Google Scholar 

Li XJ (1999) The early cellular pathology of Huntington’s disease. Mol Neurobiol 20:111–124. https://doi.org/10.1007/bf02742437

Article  PubMed  Google Scholar 

Li XJ, Li S (2015) Large animal models of Huntington’s Disease. Curr Top Behav Neurosci 22:149–160. https://doi.org/10.1007/7854_2013_246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matak P, Matak A, Moustafa S, Aryal DK, Benner EJ, Wetsel W et al (2016) Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Natl Acad Sci U S A 113:3428–3435. https://doi.org/10.1073/pnas.1519473113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moos T, Oates PS, Morgan EH (1998) Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. J Comp Neurol 398:420–430

Article  CAS  PubMed  Google Scholar 

Moos T, Skjoerringe T, Gosk S, Morgan EH (2006) Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J Neurochem 98:1946–1958. https://doi.org/10.1111/j.1471-4159.2006.04023.x

Article  CAS  PubMed  Google Scholar 

Muller M, Leavitt BR (2014) Iron dysregulation in Huntington’s disease. J Neurochem 130:328–350. https://doi.org/10.1111/jnc.12739

Article  CAS  PubMed  Google Scholar 

Nguyen-Legros J, Bizot J, Bolesse M, Pulicani JP (1980) [Diaminobenzidine black as a new histochemical demonstration of exogenous iron (author’s transl)]. Histochemistry 66:239–244. https://doi.org/10.1007/bf00495737

Article  CAS  PubMed  Google Scholar 

Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13. https://doi.org/10.1196/annals.1306.001

Article  CAS  PubMed  Google Scholar 

Paulson HL, Albin RL (2011) Huntington’s Disease: Clinical Features and Routes to Therapy. In: Neurobiology of Huntington’s Disease: Applications to Drug Discovery. Edited by Lo DC, Hughes RE. Boca Raton (FL): CRC Press/Taylor & Francis. Frontiers in Neuroscience:Chap. 1

Pujol J, Junqué C, Vendrell P, Grau JM, Martí-Vilalta JL, Olivé C et al (1992) Biological significance of iron-related magnetic resonance imaging changes in the brain. Arch Neurol 49:711–717. https://doi.org/10.1001/archneur.1992.00530310053012

Article  CAS  PubMed  Google Scholar 

Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414. https://doi.org/10.1038/nchembio807

Article  CAS  PubMed  Google Scholar 

Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17:433–445. https://doi.org/10.1002/nb

留言 (0)

沒有登入
gif