New curcumin-loaded nanocapsules as a therapeutic alternative in an amnesia model

Aebi H (1984) [13] Catalase in vitro. pp 121–126

Akhtar A, Andleeb A, Waris TS et al (2021) Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Control Release 330:1152–1167. https://doi.org/10.1016/j.jconrel.2020.11.021

Article  CAS  PubMed  Google Scholar 

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. https://doi.org/10.1021/mp700113r

Article  CAS  PubMed  Google Scholar 

Bagheri H, Ghasemi F, Barreto GE et al (2020) Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors 46:5–20. https://doi.org/10.1002/biof.1566

Article  CAS  PubMed  Google Scholar 

Balez R, Ooi L (2016) Getting to NO Alzheimer’s disease: neuroprotection versus neurotoxicity mediated by nitric oxide. Oxidative Med Cell Longev 2016:1–8. https://doi.org/10.1155/2016/3806157

Article  CAS  Google Scholar 

Barbara R, Belletti D, Pederzoli F et al (2017) Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526:413–424. https://doi.org/10.1016/j.ijpharm.2017.05.015

Article  CAS  PubMed  Google Scholar 

Battaglia S, Fabius JH, Moravkova K et al (2022) The neurobiological correlates of gaze perception in healthy individuals and neurologic patients. Biomedicines 10:627. https://doi.org/10.3390/biomedicines10030627

Article  PubMed  PubMed Central  Google Scholar 

Boiangiu RS, Brinza I, Hancianu M et al (2020) Cognitive facilitation and antioxidant effects of an essential oil mix on scopolamine-induced amnesia in rats: molecular modeling of in vitro and in vivo approaches. Molecules 25:1519. https://doi.org/10.3390/molecules25071519

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borghans B (2015) Animal models for posttraumatic stress disorder: an overview of what is used in research. World J Psychiatry 5:387. https://doi.org/10.5498/wjp.v5.i4.387

Article  PubMed  PubMed Central  Google Scholar 

Bostancıklıoğlu M (2019) An update on the interactions between Alzheimer’s disease, autophagy and inflammation. Gene 705:157–166. https://doi.org/10.1016/j.gene.2019.04.040

Article  CAS  PubMed  Google Scholar 

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  CAS  PubMed  Google Scholar 

Cheon SY, Koo B-N, Kim SY et al (2021) Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice. Sci Rep 11:8376. https://doi.org/10.1038/s41598-021-87790-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chopra H, Dey PS, Das D et al (2021) Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 26:4998. https://doi.org/10.3390/molecules26164998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coradini K, Friedrich RB, Fonseca FN et al (2015) A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci 78:163–170. https://doi.org/10.1016/j.ejps.2015.07.012

Article  CAS  PubMed  Google Scholar 

da Costa Rodrigues K, Leivas de Oliveira R, da Silva CJ et al (2022) A new arylsulfanyl-benzo-2,1,3-thiadiazoles derivative produces an anti-amnesic effect in mice by modulating acetylcholinesterase activity. Chem Biol Interact 351:109736. https://doi.org/10.1016/j.cbi.2021.109736

Article  CAS  PubMed  Google Scholar 

Das S, Suresh PK, Desmukh R (2010) Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine 6:318–323. https://doi.org/10.1016/j.nano.2009.09.002

Article  CAS  PubMed  Google Scholar 

dos Santos RB, Nakama KA, Pacheco CO et al (2021) Curcumin-loaded nanocapsules: influence of surface characteristics on technological parameters and potential antimalarial activity. Mater Sci Eng C 118:111356. https://doi.org/10.1016/j.msec.2020.111356

Article  CAS  Google Scholar 

Dos Santos RB, Funguetto-Ribeiro AC, Maciel TR et al (2022) In vivo and in vitro per se effect evaluation of Polycaprolactone and Eudragit® RS100-based nanoparticles. Biomed Pharmacother 153:113410. https://doi.org/10.1016/j.biopha.2022.113410

Article  CAS  PubMed  Google Scholar 

Ege D (2021) Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Materials 14:3332. https://doi.org/10.3390/ma14123332

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Eghbaliferiz S, Farhadi F, Barreto GE et al (2020) Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 72:769–782. https://doi.org/10.1007/s43440-020-00112-3

Article  CAS  PubMed  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Article  CAS  PubMed  Google Scholar 

Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

Article  PubMed  Google Scholar 

Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147. https://doi.org/10.1136/jnnp.66.2.137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67. https://doi.org/10.1016/0166-2236(91)90022-M

Article  CAS  PubMed  Google Scholar 

Giacomeli R, Izoton JC, dos Santos RB et al (2019) Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res 1721:146325. https://doi.org/10.1016/j.brainres.2019.146325

Article  CAS  PubMed  Google Scholar 

Giacomeli R, de Gomes MG, Reolon JB et al (2020) Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid1-42 in aged female mice. Behav Brain Res 390:112696. https://doi.org/10.1016/j.bbr.2020.112696

Article  CAS  PubMed  Google Scholar 

Giongo JL, de Almeida VR, Sagrillo MR et al (2017) Anti-inflammatory effect of geranium nanoemulsion macrophages induced with soluble protein of Candida albicans. Microb Pathog 110:694–702. https://doi.org/10.1016/j.micpath.2017.01.056

Article  CAS  PubMed  Google Scholar 

Gomes GS, Maciel TR, Piegas EM et al (2018) Optimization of Curcuma oil/quinine-loaded Nanocapsules for malaria treatment. AAPS PharmSciTech 19:551–564. https://doi.org/10.1208/s12249-017-0854-6

Article  CAS  PubMed  Google Scholar 

Helli B, Gerami H, Kavianpour M et al (2021) Curcumin Nanomicelle improves lipid profile, stress oxidative factors and inflammatory markers in patients undergoing coronary elective angioplasty; a randomized clinical trial. Endocr Metab Immune Disord Drug Targets 21:2090–2098. https://doi.org/10.2174/1871530321666210104145231

Article  CAS  PubMed  Google Scholar 

Hoover DB (2017) Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 179:1–16. https://doi.org/10.1016/j.pharmthera.2017.05.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurley LL, Akinfiresoye L, Nwulia E et al (2013) Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav Brain Res 239:27–30. https://doi.org/10.1016/j.bbr.2012.10.049

Article  CAS  PubMed  Google Scholar 

Hussain H, Ahmad S, Shah SWA et al (2021) Neuroprotective potential of synthetic mono-carbonyl curcumin analogs assessed by molecular docking studies. Molecules 26:7168. https://doi.org/10.3390/molecules26237168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussain H, Ahmad S, Shah SWA et al (2022) Attenuation of scopolamine-induced amnesia via cholinergic modulation in mice by synthetic curcumin analogs. Molecules 27:2468. https://doi.org/10.3390/molecules27082468

Article  CAS  PubMed 

留言 (0)

沒有登入
gif