Castle JT (2018) Cholesteatoma pearls: practical points and update. Head Neck Pathol 12(3):419–429
Article PubMed PubMed Central Google Scholar
Yung M, Tono T, Olszewska E et al (2017) EAONO/JOS Joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol 13:1–8
Baráth K, Huber AM, Stämpfli P, Varga Z, Kollias S (2011) Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol 32(2):221–229
Article PubMed PubMed Central Google Scholar
Schwartz KM, Lane JI, Bolster BD Jr, Neff BA (2011) The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR Am J Neuroradiol 32(3):430–436
Article CAS PubMed PubMed Central Google Scholar
Vercruysse JP, De Foer B, Pouillon M et al (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16(7):1461–1467
Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10(3):55–58
Sarlls JE, Pierpaoli C, Talagala SL, Luh WM (2011) Robust fat suppression at 3T in high-resolution diffusion-weighted single-shot echo-planar imaging of human brain. Magn Reson Med 66(6):1658–1665
Article PubMed PubMed Central Google Scholar
Más-Estellés F, Mateos-Fernández M, Carrascosa-Bisquert B et al (2012) Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics 32(4):1197–1213
Henninger B, Kremser C (2017) Diffusion weighted imaging for the detection and evaluation of cholesteatoma. World J Radiol 9(5):217–222
Article PubMed PubMed Central Google Scholar
Dudau C, Draper A, Gkagkanasiou M, Charles-Edwards G, Pai I, Connor S (2019) Cholesteatoma: multishot echo-planar vs non echo-planar diffusion-weighted MRI for the prediction of middle ear and mastoid cholesteatoma. BJR Open 1(1):20180015
PubMed PubMed Central Google Scholar
Mahmoud OM, Tominaga A, Amatya VJ et al (2011) Role of PROPELLER diffusion-weighted imaging and apparent diffusion coefficient in the evaluation of pituitary adenomas. Eur J Radiol 80(2):412–417
Pipe JG, Farthing VG, Forbes KP (2002) Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 47(1):42–52
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962
Article CAS PubMed Google Scholar
Schär M, Eggers H, Zwart NR, Chang Y, Bakhru A, Pipe JG (2015) Dixon water-fat separation in PROPELLER MRI acquired with two interleaved echoes. Magn Reson Med 75(2):718–728
Chang Y, Pipe JG, Karis JP, Gibbs WN, Zwart NR, Schär M (2015) The effects of SENSE on PROPELLER imaging. Magn Reson Med 74(6):1598–1608
Ma YJ, Liu W, Tang X, Gao JH (2015) Improved SENSE imaging using accurate coil sensitivity maps generated by a global magnitude-phase fitting method. Magn Reson Med 74(1):217–224
Haldar JP (2014) Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI. IEEE Trans Med Imaging 33(3):668–681
Article PubMed PubMed Central Google Scholar
Mani M, Jacob M, Kelley D, Magnotta V (2017) Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS). Magn Reson Med 78(2):494–507
Article CAS PubMed Google Scholar
Trzasko JD, Manduca A (2011) Calibrationless parallel MRI using CLEAR. In: 2011 Conference record of the forty fifth Asilomar conference on signals, systems and computers (ASILOMAR), pp 75–79. https://doi.org/10.1109/ACSSC.2011.6189958
Hu Y, Levine EG, Tian Q et al (2018) Motion-robust reconstruction of multishot diffusion-weighted images without phase estimation through locally low-rank regularization. Magn Reson Med 81(2):1181–1190
Article PubMed PubMed Central Google Scholar
Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127
Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26
Alom MZ, Taha TM, Yakopcic C et al (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292
Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487–492
Article ADS CAS PubMed Google Scholar
Wang S, Su Z, Ying L, et al (2016) Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging, pp 514–517. https://doi.org/10.1109/ISBI.2016.7493320
Kwon K, Kim D, Park H (2017) A parallel MR imaging method using multilayer perceptron. Med Phys 44(12):6209–6224
Quan TM, Nguyen-Duc T, Jeong WK (2018) Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 37(6):1488–1497
Aggarwal HK, Mani MP, Jacob M (2019) Multi-shot sensitivity-encoded diffusion MRI using model-based deep learning (MODL-MUSSELS). In: Proc IEEE Int Symp Biomed Imaging, pp 1541–1544. https://doi.org/10.1109/isbi.2019.8759514
Hu Y, Xu Y, Tian Q, Chen F, Shi X, Moran CJ, Daniel BL, Hargreaves BA (2021) RUN-UP: Accelerated multishot diffusion-weighted MRI reconstruction using an unrolled network with U-Net as priors. Magn Reson Med 85(2):709–720
Yang Y, Sun J, Li H, Xu Z (2016) Deep ADMM-Net for compressive sensing MRI. In: Advances in neural information processing systems 29 (NIPS 2016), pp 10–18
Hammernik K, Klatzer T, Kobler E et al (2017) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79:3055–3071
Article PubMed PubMed Central Google Scholar
Zhang J, Ghanem B (2018) ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In: IEEE conference on computer vision and pattern recognition (CVPR). Institute of Electrical and Electronics Engineers (IEEE), Salt Lake City, pp 1828–1837
Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 51(2):560–574
Article ADS MathSciNet Google Scholar
Huang J, Zhang S, Li H, Metaxas DN (2011) Composite splitting algorithms for convex optimization. Comput Vis Image Underst 115(12):1610–1622
Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202
Article MathSciNet Google Scholar
Zwart NR, Pipe JG (2015) Graphical programming interface: A development environment for MRI methods. Magn Reson Med 74(5):1449–1460
Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001
Article PubMed PubMed Central Google Scholar
Abadi M, Barham P, Chen J, et al (2016) TensorFlow: a system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, Savannah, GA, USA, Berkeley, 265–283.
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
Miao X, Lingala SG, Guo Y, Jao T, Usman M, Prieto C, Nayak KS (2016) Accelerated cardiac cine MRI using locally low rank and finite difference constraints. Magn Reson Imaging 34(6):707–714
Vizioli L, Moeller S, Dowdle L et al (2021) Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat Commun 12:5181
Article ADS CAS PubMed PubMed Central Google Scholar
Zhang T, Pauly JM, Levesque IR (2015) Accelerating parameter mapping with a locally low rank constraint. Magn Reson Med 73(2):655–661
Hu Y, Wang X, Tian Q, Yang G, Daniel B, McNab J, Hargreaves B (2020) Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR). Magn Reson Med 83(5):1596–1607
Article CAS PubMed Google Scholar
Saucedo A, Lefkimmiatis S, Rangwala N, Kyunghyun S (2017) Improved computational efficiency of locally low rank MRI reconstruction using iterative random patch adjustments. IEEE Trans Med Imaging 36(6):1209–1220
Pipe JG, Menon P (1999) Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med 41(1):179–186
Comments (0)