Transcriptional Inhibition of the Mecp2 Promoter by MeCP2E1 and MeCP2E2 Isoforms Suggests Negative Auto-Regulatory Feedback that can be Moderated by Metformin

Adachi M, Keefer EW, Jones FS (2005) A segment of the Mecp2 promoter is sufficient to drive expression in neurons. Hum Mol Genet 14(23):3709–3722

Amiri S, Davie JR, Rastegar M (2020) Chronic ethanol exposure alters DNA methylation in neural stem cells: role of mouse strain and sex. Mol Neurobiol 57(2):650–667

Article  CAS  PubMed  Google Scholar 

Buist M, El Tobgy N, Shevkoplyas D, Genung M, Sher AA, Pejhan S et al (2022) Differential sensitivity of the protein translation initiation machinery and mTOR signaling to MECP2 gain- and loss-of-function involves MeCP2 isoform-specific homeostasis in the brain. Cells 11(9)

Buist M, Fuss D, Rastegar M (2021) Transcriptional regulation of MECP2E1-E2 isoforms and BDNF by metformin and simvastatin through analyzing nascent RNA synthesis in a human brain cell line. Biomolecules 11(8)

Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chao HT, Zoghbi HY (2012) MeCP2: only 100% will do. Nat Neurosci 15(2):176–177

Article  CAS  PubMed  Google Scholar 

Chen D, Jansson A, Sim D, Larsson A, Nordlund P (2017) Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J Biol Chem 292(32):13449–13458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dastidar SG, Bardai FH, Ma C, Price V, Rawat V, Verma P et al (2012) Isoform-specific toxicity of Mecp2 in postmitotic neurons: suppression of neurotoxicity by FoxG1. J Neurosci 32(8):2846–2855

del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG et al (2006) Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 8(12):784–792

Djuric U, Cheung AY, Zhang W, Mok RS, Lai W, Piekna A et al (2015) MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol Dis 76:37–45

Fichou Y, Nectoux J, Bahi-Buisson N, Rosas-Vargas H, Girard B, Chelly J et al (2009) The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. Neurogenetics 10(2):127–133

Article  CAS  PubMed  Google Scholar 

Good KV, Vincent JB, Ausio J (2021) MeCP2: the genetic driver of Rett syndrome epigenetics. Front Genet 12:620859

Han K, Gennarino VA, Lee Y, Pang K, Hashimoto-Torii K, Choufani S et al (2013) Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev 27(5):485–490

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horvath PM, Monteggia LM (2018) MeCP2 as an activator of gene expression. Trends Neurosci 41(2):72–74

Itoh M, Tahimic CG, Ide S, Otsuki A, Sasaoka T, Noguchi S et al (2012) Methyl CpG-binding protein isoform MeCP2_e2 is dispensable for Rett syndrome phenotypes but essential for embryo viability and placenta development. J Biol Chem 287(17):13859–13867

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kerr B, Soto CJ, Saez M, Abrams A, Walz K, Young JI (2012) Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet 20(1):69–76

Kumar A, Kamboj S, Malone BM, Kudo S, Twiss JL, Czymmek KJ et al (2008) Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MeCP2 in vivo. J Cell Sci 121(Pt 7):1128–1137

Lamonica JM, Kwon DY, Goffin D, Fenik P, Johnson BS, Cui Y et al (2017) Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest 127(5):1889–1904

Article  PubMed  PubMed Central  Google Scholar 

Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F et al (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6):905–914

Article  CAS  PubMed  Google Scholar 

Li CH, Coffey EL, Dall’Agnese A, Hannett NM, Tang X, Henninger JE et al (2020) MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586(7829):440–444

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liyanage VRB, Olson CO, Zachariah RM, Davie JR, Rastegar M (2019) DNA methylation contributes to the differential expression levels of Mecp2 in male mice neurons and astrocytes. Int J Mol Sci 20(8)

Liyanage VR, Zachariah RM, Davie JR, Rastegar M (2015) Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements. Exp Neurol 265:102–117

Liyanage VR, Zachariah RM, Rastegar M (2013) Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells. Mol Autism 4(1):46

Lombardi LM, Zaghlula M, Sztainberg Y, Baker SA, Klisch TJ, Tang AA et al (2017) An RNA interference screen identifies druggable regulators of MeCP2 stability. Sci Transl Med 9(404)

Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW (2009) Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 29(16):5051–5061

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez de Paz A, Khajavi L, Martin H, Claveria-Gimeno R, Tom Dieck S, Cheema MS et al (2019) MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics Chromatin 12(1):63

Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ et al (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 36(4):339–341

Mok RSF, Zhang W, Sheikh TI, Pradeepan K, Fernandes IR, DeJong LC et al (2022) Wide spectrum of neuronal and network phenotypes in human stem cell-derived excitatory neurons with Rett syndrome-associated MECP2 mutations. Transl Psychiatry 12(1):450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88(4):471–481

Article  CAS  PubMed  Google Scholar 

Olson CO, Pejhan S, Kroft D, Sheikholeslami K, Fuss D, Buist M et al (2018) MECP2 mutation interrupts Nucleolin-mTOR-P70S6K signaling in Rett syndrome patients. Front Genet 9:635

Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VR, Rastegar M (2014) Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS ONE 9(3):e90645

Orlic-Milacic M, Kaufman L, Mikhailov A, Cheung AY, Mahmood H, Ellis J et al (2014) Over-expression of either MECP2_e1 or MECP2_e2 in neuronally differentiated cells results in different patterns of gene expression. PLoS ONE 9(4):e91742

Pejhan S, Del Bigio MR, Rastegar M (2020) The MeCP2E1/E2-BDNF-miR132 homeostasis regulatory network is region-dependent in the human brain and is impaired in Rett syndrome patients. Front Cell Dev Biol 8:763

Pejhan S, Rastegar M (2021) Role of DNA Methyl-CpG-binding protein MeCP2 in Rett syndrome pathobiology and mechanism of disease. Biomolecules 11(1)

Petazzi P, Akizu N, Garcia A, Estaras C, Martinez de Paz A, Rodriguez-Paredes M et al (2014) An increase in MECP2 dosage impairs neural tube formation. Neurobiol Dis 67:49–56

Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung AY, Elliott S et al (2009) MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS ONE 4(8):e6810

Rastegar M, Szpirer C, Rousseau GG, Lemaigre FP (1998) Hepatocyte nuclear factor 6: organization and chromosomal assignment of the rat gene and characterization of its promoter. Biochem J 334(Pt 3):565–569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues DC, Mufteev M, Ellis J (2020) Regulation, diversity and function of MECP2 exon and 3’UTR isoforms. Hum Mol Genet 29(R1):R89–R99

Rousseaux MWC, Vazquez-Velez GE, Al-Ramahi I, Jeong HH, Bajic A, Revelli JP et al (2018) A druggable genome screen identifies modifiers of alpha-synuclein levels via a tiered cross-species validation approach. J Neurosci 38(43):9286–9301

Shevkoplyas D, Vuu YM, Davie JR, Rastegar M (2022) The chromatin structure at the MECP2 gene and in silico prediction of potential coding and non-coding MECP2 splice variants. Int J Mol Sci 23(24)

Spadafora C (2023) The epigenetic basis of evolution. Prog Biophys Mol Biol

Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L et al (2023) Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 224:109350

Article  CAS  PubMed  Google Scholar 

Xu W, Liyanage VRB, MacAulay A, Levy RD, Curtis K, Olson CO et al (2019) Genome-wide transcriptome landscape of embryonic brain-derived neural stem cells exposed to alcohol with strain-specific cross-examination in BL6 and CD1 mice. Sci Rep 9(1):206

Yasui DH, Gonzales ML, Aflatooni JO, Crary FK, Hu DJ, Gavino BJ et al (2014) Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum Mol Genet 23(9):2447–2458

Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M (2012) Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS ONE 7(11):e49763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L et al (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52(2):255–269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuliani I, Urbinati C, Valenti D, Quattrini MC, Medici V, Cosentino L et al (2020) The anti-diabetic drug metformin rescues aberrant mitochondrial activity and restrains oxidative stress in a female mouse model of Rett syndrome. J Clin Med 9(6)

留言 (0)

沒有登入
gif