Quantum Machine-Based Decision Support System for the Detection of Schizophrenia from EEG Records

J. L. Sobell, M. J. Mikesell, and C. T. McMurray, ‘Genetics and etiopathophysiology of schizophrenia’, Mayo Clin Proc, vol. 77, no. 10, pp. 1068–1082, Oct. 2002, https://doi.org/10.4065/77.10.1068.

Article  PubMed  Google Scholar 

J. Vilain et al, ‘[Environmental risk factors for schizophrenia: a review]’, Encephale, vol. 39, no. 1, pp. 19–28, Feb. 2013, https://doi.org/10.1016/j.encep.2011.12.007.

Article  CAS  PubMed  Google Scholar 

N. C. Andreasen, ‘Schizophrenia: the fundamental questions’, Brain Research Reviews, vol. 31, no. 2, pp. 106–112, Mar. 2000, https://doi.org/10.1016/S0165-0173(99)00027-2.

Article  CAS  PubMed  Google Scholar 

T. M. Laursen, M. Nordentoft, and P. B. Mortensen, ‘Excess early mortality in schizophrenia’, Annu Rev Clin Psychol, vol. 10, pp. 425–448, 2014, https://doi.org/10.1146/annurev-clinpsy-032813-153657.

Article  PubMed  Google Scholar 

B. A. Palmer, V. S. Pankratz, and J. M. Bostwick, ‘The Lifetime Risk of Suicide in Schizophrenia: A Reexamination’, Archives of General Psychiatry, vol. 62, no. 3, pp. 247–253, Mar. 2005, https://doi.org/10.1001/archpsyc.62.3.247.

Article  PubMed  Google Scholar 

B. Ay et al, ‘Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals’, Journal of Medical Systems, vol. 43, no. 7, p. 205, May 2019, https://doi.org/10.1007/s10916-019-1345-y.

Article  PubMed  Google Scholar 

D. P. Subha, P. K. Joseph, R. Acharya U, and C. M. Lim, ‘EEG Signal Analysis: A Survey’, Journal of Medical Systems, vol. 34, no. 2, pp. 195–212, Apr. 2010. https://doi.org/10.1007/s10916-008-9231-z.

Article  PubMed  Google Scholar 

Y. Gujju, A. Matsuo, and R. Raymond, ‘Quantum Machine Learning on Near-Term Quantum Devices: Current State of Supervised and Unsupervised Techniques for Real-World Applications’. arXiv, Jul. 03, 2023. Accessed: Oct. 12, 2023. [Online]. Available: http://arxiv.org/abs/2307.00908

R. Buettner, D. Beil, S. Scholtz, and A. Djemai, ‘Development of a Machine Learning Based Algorithm To Accurately Detect Schizophrenia based on One-minute EEG Recordings’, Hawaii International Conference on System Sciences, 2020. https://doi.org/10.24251/HICSS.2020.393.

J. Johannesen, J. Bi, R. Jiang, J. Kenney, and C.-M. Chen, ‘Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults’, Neuropsychiatric Electrophysiology, vol. 2, Dec. 2016, https://doi.org/10.1186/s40810-016-0017-0.

Article  PubMed  PubMed Central  Google Scholar 

J. Ruiz de Miras, A. J. Ibáñez-Molina, M. F. Soriano, and S. Iglesias-Parro, ‘Schizophrenia classification using machine learning on resting state EEG signal’, Biomedical Signal Processing and Control, vol. 79, p. 104233, Jan. 2023, https://doi.org/10.1016/j.bspc.2022.104233.

Article  Google Scholar 

M. Sharma and U. R. Acharya, ‘Automated detection of schizophrenia using optimal wavelet-based $$l_1$$norm features extracted from single-channel EEG’, Cognitive Neurodynamics, vol. 15, no. 4, pp. 661–674, Aug. 2021, https://doi.org/10.1007/s11571-020-09655-w.

Article  PubMed  PubMed Central  Google Scholar 

L. Zhang, "EEG Signals Classification Using Machine Learning for The Identification and Diagnosis of Schizophrenia," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 4521-4524, 2019, https://doi.org/10.1109/EMBC.2019.8857946.

R. Sharma, S. Tripathi and K. K. Sekhon, "Detection of Schizophrenia using Machine Learning," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, pp. 505-512, 2023, https://doi.org/10.1109/ICACITE57410.2023.10183069.

K. Das and R. B. Pachori, ‘Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals’, Biomedical Signal Processing and Control, vol. 67, p. 102525, May 2021, https://doi.org/10.1016/j.bspc.2021.102525.

Article  Google Scholar 

S. K. Tikka et al, ‘Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study’, Indian J Psychiatry, vol. 62, no. 3, pp. 273–282, 2020, https://doi.org/10.4103/psychiatry.IndianJPsychiatry_91_20.

Article  PubMed  PubMed Central  Google Scholar 

M. A. Vázquez, A. Maghsoudi, and I. P. Mariño, ‘An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals’, Front Syst Neurosci, vol. 15, p. 652662, 2021, https://doi.org/10.3389/fnsys.2021.652662.

Article  PubMed  PubMed Central  Google Scholar 

M. Shim, H.-J. Hwang, D.-W. Kim, S.-H. Lee, and C.-H. Im, ‘Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features’, Schizophrenia Research, vol. 176, no. 2, pp. 314–319, Oct. 2016, https://doi.org/10.1016/j.schres.2016.05.007.

Article  PubMed  Google Scholar 

A. Nikhil Chandran, K. Sreekumar, and D. P. Subha, ‘EEG-Based Automated Detection of Schizophrenia Using Long Short-Term Memory (LSTM) Network’, Advances in Machine Learning and Computational Intelligence: Proceedings of ICMLCI 2019, pp. 229-236. Springer Singapore, 2021, https://doi.org/10.1007/978-981-15-5243-4_19.

G. Sharma and A. M. Joshi, ‘SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG’, IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022, https://doi.org/10.1109/TIM.2022.3212040.

Article  Google Scholar 

S. L. Oh, J. Vicnesh, E. J. Ciaccio, R. Yuvaraj, and U. R. Acharya, ‘Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals’, Applied Sciences, vol. 9, no. 14, Jan. 2019, https://doi.org/10.3390/app9142870.

S. K. Khare, V. Bajaj, and U. R. Acharya, ‘SPWVD-CNN for Automated Detection of Schizophrenia Patients Using EEG Signals’, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–9, 2021, https://doi.org/10.1109/TIM.2021.3070608.

Article  Google Scholar 

C. A. Ellis, A. Sattiraju, R. Miller, and V. Calhoun, ‘Examining Effects of Schizophrenia on EEG with Explainable Deep Learning Models’.2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE), pp. 301-304. IEEE, 2022, https://doi.org/10.1101/2022.05.26.493659.

A. Shalbaf, S. Bagherzadeh, and A. Maghsoudi, ‘Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals’, Phys Eng Sci Med, vol. 43, no. 4, pp. 1229–1239, Dec. 2020, https://doi.org/10.1007/s13246-020-00925-9.

Article  PubMed  Google Scholar 

Z. Aslan and M. Akin, ‘A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals’, Phys Eng Sci Med, vol. 45, no. 1, pp. 83–96, Mar. 2022, https://doi.org/10.1007/s13246-021-01083-2.

Article  PubMed  Google Scholar 

Z. Yu, ‘Analyzing SARS CoV-2 Patient Data Using Quantum Supervised Machine Learning’. bioRxiv, pp. 2021-10, Oct 2021. https://doi.org/10.1101/2021.10.26.466019.

S. Moradi et al, ‘Clinical Data Classification with Noisy Intermediate Scale Quantum Computers’, Scientific Reports, vol. 12, no. 1, Feb. 2022, https://doi.org/10.1038/s41598-022-05971-9.

H. Gupta, H. Varshney, T. K. Sharma, N. Pachauri, and O. P. Verma, ‘Comparative performance analysis of quantum machine learning with deep learning for diabetes prediction’, Complex and Intelligent Systems, vol. 8, no. 4, pp. 3073–3087, Aug. 2022, https://doi.org/10.1007/s40747-021-00398-7.

Article  Google Scholar 

Z. Ozpolat and M. Karabatak, ‘Performance Evaluation of Quantum-Based Machine Learning Algorithms for Cardiac Arrhythmia Classification’, Diagnostics, vol. 13, no. 6, Jan. 2023, https://doi.org/10.3390/diagnostics13061099.

Y. Kumar et al, ‘Heart Failure Detection Using Quantum-Enhanced Machine Learning and Traditional Machine Learning Techniques for Internet of Artificially Intelligent Medical Things’, Wireless Communications and Mobile Computing, vol. 2021, p. e1616725, Dec. 2021, https://doi.org/10.1155/2021/1616725.

Article  Google Scholar 

T. Shahwar, J. Zafar, A. Almogren, H. Zafar, A. Rehman, and H. Hamam, ‘Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks’, Electronics, vol. 11, p. 721, Feb. 2022, https://doi.org/10.3390/electronics11050721.

Article  Google Scholar 

A. Padha and A. Sahoo, ‘Quantum Enhanced Machine Learning for Unobtrusive Stress Monitoring’, Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing, in IC3-2022. New York, NY, USA: Association for Computing Machinery, pp. 476–483 , Oct. 2022 https://doi.org/10.1145/3549206.3549288.

A. Andreev and G. Cattan, ‘Quantum Support Vector Machine Applied to the Classication of EEG Signals with Riemanian Geometry’, Doctoral Dissertation GIPSA-lab, 2023. Accessed: Sep. 20, 2023. [Online]. Available: https://hal.science/hal-03939121

G. Van Veen, A. Barachant, A. Andreev, G. Cattan, P. C. Rodrigues, and M. Congedo, ‘Building Brain Invaders: EEG Data of an Experimental Validation’. arXiv preprint arXiv:1905.05182, May 2019. https://doi.org/10.48550/arXiv.1905.05182.

M. S. Bascil, A. Y. Tesneli, and F. Temurtas, ‘Spectral Feature Extraction of EEG Signals and Pattern Recognition During Mental Tasks of 2-D Cursor Movements for BCI Using SVM and ANN’, Australas Phys Eng Sci Med, vol. 39, no. 3, pp. 665–676, Sep. 2016, https://doi.org/10.1007/s13246-016-0462-x.

Article  PubMed  Google Scholar 

‘EEG Database - Schizophrenia’. Accessed: Jul. 15, 2023. [Online]. Available: http://brain.bio.msu.ru/eeg_schizophrenia.htm

S. V. Borisov, A. Ya. Kaplan, N. L. Gorbachevskaya, and I. A. Kozlova, ‘Analysis of EEG Structural Synchrony in Adolescents with Schizophrenic Disorders’, Hum Physiol, vol. 31, no. 3, pp. 255–261, May 2005, https://doi.org/10.1007/s10747-005-0042-z.

Article  Google Scholar 

T. B. Alakuş and İ. Türkoğlu, ‘Pozitif ve Negatif Duyguların Ayrımında Etkili EEG Kanallarının Dalgacık Dönüşümü ve Destek Vektör Makineleri ile Belirlenmesi’, Bilişim Teknolojileri Dergisi, vol. 12, no. 3, Jul. 2019, https://doi.org/10.17671/gazibtd.482939.

A. Hamad, E. H. Houssein, A. E. Hassanien, and A. A. Fahmy, ‘Feature extraction of epilepsy EEG using discrete wavelet transform’, 2016 12th International Computer Engineering Conference (ICENCO), pp. 190–195, Dec. 2016 https://doi.org/10.1109/ICENCO.2016.7856467.

M. Hamada, B. B. Zaidan, and A. A. Zaidan, ‘A Systematic Review for Human EEG Brain Signals Based Emotion Classification, Feature Extraction, Brain Condition, Group Comparison’, Journal of Medical Systems, vol. 42, no. 9, p. 162, Jul. 2018, https://doi.org/10.1007/s10916-018-1020-8.

Article  PubMed  Google Scholar 

H. Yu and M. Bennamoun, ‘1D-PCA, 2D-PCA to nD-PCA’, 18th International Conference on Pattern Recognition (ICPR’06), pp. 181–184, Aug. 2006, https://doi.org/10.1109/ICPR.2006.19.

F. A. Mousa, R. A. El-Khoribi, and M. E. Shoman, ‘A Novel Brain Computer Interface Based on Principle Component Analysis’, Procedia Computer Science, vol. 82, pp. 49–56, 2016, https://doi.org/10.1016/j.procs.2016.04.008.

Article  Google Scholar 

J. C. Stoltzfus, ‘Logistic Regression: A Brief Primer’, Academic Emergency Medicine, vol. 18, no. 10, pp. 1099–1104, 2011, https://doi.org/10.1111/j.1553-2712.2011.01185.x.

Article  PubMed  Google Scholar 

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan kaufmann, 2022.

S. Mahato and S. Paul, ‘Classification of Depression Patients and Normal Subjects Based on Electroencephalogram (EEG) Signal Using Alpha Power and Theta Asymmetry’, Journal of Medical Systems, vol. 44, no. 1, p. 28, Dec. 2019, https://doi.org/10.1007/s10916-019-1486-z.

Article  PubMed  Google Scholar 

Y. SONG and Y. LU, ‘Decision Tree Methods: Applications for Classification and Prediction’, Shanghai archives of psychiatry, vol. 27, no. 2, pp. 130–135, Apr. 2015, https://doi.org/10.11919/j.issn.1002-0829.215044.

G. Biau and E. Scornet, ‘A random forest guided tour’, TEST, vol. 25, no. 2, pp. 197–227, Jun. 2016, https://doi.org/10.1007/s11749-016-0481-7.

Article  MathSciNet  Google Scholar 

P. Kaur and M. Sharma, ‘Diagnosis of Human Psychological Disorders using Supervised Learning and Nature-Inspired Computing Techniques: A Meta-Analysis’, Journal of Medical Systems, vol. 43, no. 7, p. 204, May 2019, https://doi.org/10.1007/s10916-019-1341-2.

Article  PubMed  Google Scholar 

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, ‘Application of Higher Order Spectra to Identify Epileptic EEG’, Journal of Medical Systems, vol. 35, no. 6, pp. 1563–1571, Dec. 2011, https://doi.org/10.1007/s10916-010-9433-z.

Article  PubMed  Google Scholar 

V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J. M. Chow, & J. M. Gambetta, ‘Supervised Learning with Quantum-Enhanced Feature Spaces’, Nature, vol. 567, no. 7747, Mar. 2019, https://doi.org/10.1038/s41586-019-0980-2.

H.-J. Kim, G.-J. Song, K.-B. Jang, and H.-J. Seo, ‘Cryptanalysis of Caesar using Quantum Support Vector Machine’,2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), pp. 1–5 , Nov. 2021, https://doi.org/10.1109/ICCE-Asia53811.2021.9641932.

A. Baughman, K. Yogaraj, R. Hebbar, S. Ghosh, R. U. Haq, and Y. Chhabra, ‘Study of Feature Importance for Quantum Machine Learning Models’. arXiv, Jun

留言 (0)

沒有登入
gif